Evaluate
-\frac{61}{12}\approx -5.083333333
Factor
-\frac{61}{12} = -5\frac{1}{12} = -5.083333333333333
Share
Copied to clipboard
-\sqrt{4}-\sqrt{\frac{1\times 144+25}{144}}+\frac{2}{5}\sqrt[3]{-125}
Calculate -2 to the power of 2 and get 4.
-2-\sqrt{\frac{1\times 144+25}{144}}+\frac{2}{5}\sqrt[3]{-125}
Calculate the square root of 4 and get 2.
-2-\sqrt{\frac{144+25}{144}}+\frac{2}{5}\sqrt[3]{-125}
Multiply 1 and 144 to get 144.
-2-\sqrt{\frac{169}{144}}+\frac{2}{5}\sqrt[3]{-125}
Add 144 and 25 to get 169.
-2-\frac{13}{12}+\frac{2}{5}\sqrt[3]{-125}
Rewrite the square root of the division \frac{169}{144} as the division of square roots \frac{\sqrt{169}}{\sqrt{144}}. Take the square root of both numerator and denominator.
-\frac{37}{12}+\frac{2}{5}\sqrt[3]{-125}
Subtract \frac{13}{12} from -2 to get -\frac{37}{12}.
-\frac{37}{12}+\frac{2}{5}\left(-5\right)
Calculate \sqrt[3]{-125} and get -5.
-\frac{37}{12}-2
Multiply \frac{2}{5} and -5 to get -2.
-\frac{61}{12}
Subtract 2 from -\frac{37}{12} to get -\frac{61}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}