Evaluate (complex solution)
\frac{-3\sqrt{3}i+3}{2}\approx 1.5-2.598076211i
Real Part (complex solution)
\frac{3}{2} = 1\frac{1}{2} = 1.5
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
-\sqrt{\frac{9}{4}-3\sqrt{9}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
-\sqrt{\frac{9}{4}-3\times 3}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Calculate the square root of 9 and get 3.
-\sqrt{\frac{9}{4}-9}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Multiply 3 and 3 to get 9.
-\sqrt{-\frac{27}{4}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Subtract 9 from \frac{9}{4} to get -\frac{27}{4}.
-\frac{\sqrt{-27}}{\sqrt{4}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Rewrite the square root of the division \sqrt{-\frac{27}{4}} as the division of square roots \frac{\sqrt{-27}}{\sqrt{4}}.
-\frac{3i\sqrt{3}}{\sqrt{4}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Factor -27=\left(3i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(3i\right)^{2}\times 3} as the product of square roots \sqrt{\left(3i\right)^{2}}\sqrt{3}. Take the square root of \left(3i\right)^{2}.
-\frac{3i\sqrt{3}}{2}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Calculate the square root of 4 and get 2.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Divide 3i\sqrt{3} by 2 to get \frac{3}{2}i\sqrt{3}.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{4\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{4\times 9}}{\left(-\sqrt{4}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{36}}{\left(-\sqrt{4}\right)^{2}}
Multiply 4 and 9 to get 36.
-\frac{3}{2}i\sqrt{3}+\frac{6}{\left(-\sqrt{4}\right)^{2}}
Calculate the square root of 36 and get 6.
-\frac{3}{2}i\sqrt{3}+\frac{6}{\left(-2\right)^{2}}
Calculate the square root of 4 and get 2.
-\frac{3}{2}i\sqrt{3}+\frac{6}{4}
Calculate -2 to the power of 2 and get 4.
-\frac{3}{2}i\sqrt{3}+\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}