Skip to main content
Evaluate (complex solution)
Tick mark Image
Real Part (complex solution)
Tick mark Image
Evaluate
Tick mark Image

Share

-\sqrt{\frac{9}{4}-3\sqrt{9}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
-\sqrt{\frac{9}{4}-3\times 3}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Calculate the square root of 9 and get 3.
-\sqrt{\frac{9}{4}-9}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Multiply 3 and 3 to get 9.
-\sqrt{-\frac{27}{4}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Subtract 9 from \frac{9}{4} to get -\frac{27}{4}.
-\frac{\sqrt{-27}}{\sqrt{4}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Rewrite the square root of the division \sqrt{-\frac{27}{4}} as the division of square roots \frac{\sqrt{-27}}{\sqrt{4}}.
-\frac{3i\sqrt{3}}{\sqrt{4}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Factor -27=\left(3i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(3i\right)^{2}\times 3} as the product of square roots \sqrt{\left(3i\right)^{2}}\sqrt{3}. Take the square root of \left(3i\right)^{2}.
-\frac{3i\sqrt{3}}{2}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Calculate the square root of 4 and get 2.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Divide 3i\sqrt{3} by 2 to get \frac{3}{2}i\sqrt{3}.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{4\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{4\times 9}}{\left(-\sqrt{4}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{36}}{\left(-\sqrt{4}\right)^{2}}
Multiply 4 and 9 to get 36.
-\frac{3}{2}i\sqrt{3}+\frac{6}{\left(-\sqrt{4}\right)^{2}}
Calculate the square root of 36 and get 6.
-\frac{3}{2}i\sqrt{3}+\frac{6}{\left(-2\right)^{2}}
Calculate the square root of 4 and get 2.
-\frac{3}{2}i\sqrt{3}+\frac{6}{4}
Calculate -2 to the power of 2 and get 4.
-\frac{3}{2}i\sqrt{3}+\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.