Solve for c
c=\frac{248}{g_{x}o}
g_{x}\neq 0\text{ and }o\neq 0
Solve for g_x
g_{x}=\frac{248}{co}
o\neq 0\text{ and }c\neq 0
Share
Copied to clipboard
-\frac{1}{8}cog_{x}=-31
Multiply -1 and \frac{1}{8} to get -\frac{1}{8}.
\left(-\frac{g_{x}o}{8}\right)c=-31
The equation is in standard form.
\frac{\left(-\frac{g_{x}o}{8}\right)c}{-\frac{g_{x}o}{8}}=-\frac{31}{-\frac{g_{x}o}{8}}
Divide both sides by -\frac{1}{8}og_{x}.
c=-\frac{31}{-\frac{g_{x}o}{8}}
Dividing by -\frac{1}{8}og_{x} undoes the multiplication by -\frac{1}{8}og_{x}.
c=\frac{248}{g_{x}o}
Divide -31 by -\frac{1}{8}og_{x}.
-\frac{1}{8}cog_{x}=-31
Multiply -1 and \frac{1}{8} to get -\frac{1}{8}.
\left(-\frac{co}{8}\right)g_{x}=-31
The equation is in standard form.
\frac{\left(-\frac{co}{8}\right)g_{x}}{-\frac{co}{8}}=-\frac{31}{-\frac{co}{8}}
Divide both sides by -\frac{1}{8}co.
g_{x}=-\frac{31}{-\frac{co}{8}}
Dividing by -\frac{1}{8}co undoes the multiplication by -\frac{1}{8}co.
g_{x}=\frac{248}{co}
Divide -31 by -\frac{1}{8}co.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}