Factor
\frac{gm_{A}\left(\mu _{B}\cos(\theta )-\mu _{A}\cos(\theta )-2\sin(\theta )\right)}{2}
Evaluate
\frac{gm_{A}\left(\mu _{B}\cos(\theta )-\mu _{A}\cos(\theta )-2\sin(\theta )\right)}{2}
Graph
Share
Copied to clipboard
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{m_{A}\left(\sin(\theta )-\mu _{A}\cos(\theta )\right)+m_{A}\left(\sin(\theta )-\mu _{B}\cos(\theta )\right)}{2m_{A}})
Combine m_{A} and m_{A} to get 2m_{A}.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{m_{A}\left(-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+\sin(\theta )+\sin(\theta )\right)}{2m_{A}})
Factor the expressions that are not already factored in \frac{m_{A}\left(\sin(\theta )-\mu _{A}\cos(\theta )\right)+m_{A}\left(\sin(\theta )-\mu _{B}\cos(\theta )\right)}{2m_{A}}.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+\sin(\theta )+\sin(\theta )}{2})
Cancel out m_{A} in both numerator and denominator.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )}{2})
Combine \sin(\theta ) and \sin(\theta ) to get 2\sin(\theta ).
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{m_{A}\left(-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )\right)}{2}g)
Express m_{A}\times \frac{-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )}{2} as a single fraction.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{-m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta )}{2}g)
Use the distributive property to multiply m_{A} by -\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta ).
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{\left(-m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta )\right)g}{2})
Express \frac{-m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta )}{2}g as a single fraction.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{-m_{A}\mu _{A}\cos(\theta )g-m_{A}\mu _{B}\cos(\theta )g+2m_{A}\sin(\theta )g}{2})
Use the distributive property to multiply -m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta ) by g.
\frac{m_{A}g\left(-2\mu _{A}\cos(\theta )-\left(-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )\right)\right)}{2}
Factor out \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}