Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{m_{A}\left(\sin(\theta )-\mu _{A}\cos(\theta )\right)+m_{A}\left(\sin(\theta )-\mu _{B}\cos(\theta )\right)}{2m_{A}})
Combine m_{A} and m_{A} to get 2m_{A}.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{m_{A}\left(-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+\sin(\theta )+\sin(\theta )\right)}{2m_{A}})
Factor the expressions that are not already factored in \frac{m_{A}\left(\sin(\theta )-\mu _{A}\cos(\theta )\right)+m_{A}\left(\sin(\theta )-\mu _{B}\cos(\theta )\right)}{2m_{A}}.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+\sin(\theta )+\sin(\theta )}{2})
Cancel out m_{A} in both numerator and denominator.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )}{2})
Combine \sin(\theta ) and \sin(\theta ) to get 2\sin(\theta ).
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{m_{A}\left(-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )\right)}{2}g)
Express m_{A}\times \frac{-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )}{2} as a single fraction.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{-m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta )}{2}g)
Use the distributive property to multiply m_{A} by -\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta ).
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{\left(-m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta )\right)g}{2})
Express \frac{-m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta )}{2}g as a single fraction.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{-m_{A}\mu _{A}\cos(\theta )g-m_{A}\mu _{B}\cos(\theta )g+2m_{A}\sin(\theta )g}{2})
Use the distributive property to multiply -m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta ) by g.
\frac{m_{A}g\left(-2\mu _{A}\cos(\theta )-\left(-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )\right)\right)}{2}
Factor out \frac{1}{2}.