Solve for x (complex solution)
x=-3i
x=3i
Graph
Share
Copied to clipboard
-\left(x-3\right)\left(x-3\right)=\left(x+3\right)\left(3+x\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
-\left(x-3\right)^{2}=\left(x+3\right)\left(3+x\right)
Multiply x-3 and x-3 to get \left(x-3\right)^{2}.
-\left(x-3\right)^{2}=\left(x+3\right)^{2}
Multiply x+3 and 3+x to get \left(x+3\right)^{2}.
-\left(x^{2}-6x+9\right)=\left(x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-x^{2}+6x-9=\left(x+3\right)^{2}
To find the opposite of x^{2}-6x+9, find the opposite of each term.
-x^{2}+6x-9=x^{2}+6x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
-x^{2}+6x-9-x^{2}=6x+9
Subtract x^{2} from both sides.
-2x^{2}+6x-9=6x+9
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+6x-9-6x=9
Subtract 6x from both sides.
-2x^{2}-9=9
Combine 6x and -6x to get 0.
-2x^{2}=9+9
Add 9 to both sides.
-2x^{2}=18
Add 9 and 9 to get 18.
x^{2}=\frac{18}{-2}
Divide both sides by -2.
x^{2}=-9
Divide 18 by -2 to get -9.
x=3i x=-3i
The equation is now solved.
-\left(x-3\right)\left(x-3\right)=\left(x+3\right)\left(3+x\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
-\left(x-3\right)^{2}=\left(x+3\right)\left(3+x\right)
Multiply x-3 and x-3 to get \left(x-3\right)^{2}.
-\left(x-3\right)^{2}=\left(x+3\right)^{2}
Multiply x+3 and 3+x to get \left(x+3\right)^{2}.
-\left(x^{2}-6x+9\right)=\left(x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-x^{2}+6x-9=\left(x+3\right)^{2}
To find the opposite of x^{2}-6x+9, find the opposite of each term.
-x^{2}+6x-9=x^{2}+6x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
-x^{2}+6x-9-x^{2}=6x+9
Subtract x^{2} from both sides.
-2x^{2}+6x-9=6x+9
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+6x-9-6x=9
Subtract 6x from both sides.
-2x^{2}-9=9
Combine 6x and -6x to get 0.
-2x^{2}-9-9=0
Subtract 9 from both sides.
-2x^{2}-18=0
Subtract 9 from -9 to get -18.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
Square 0.
x=\frac{0±\sqrt{8\left(-18\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{0±\sqrt{-144}}{2\left(-2\right)}
Multiply 8 times -18.
x=\frac{0±12i}{2\left(-2\right)}
Take the square root of -144.
x=\frac{0±12i}{-4}
Multiply 2 times -2.
x=-3i
Now solve the equation x=\frac{0±12i}{-4} when ± is plus.
x=3i
Now solve the equation x=\frac{0±12i}{-4} when ± is minus.
x=-3i x=3i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}