Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-\frac{\left(x^{2}-3x\right)\left(x-2\right)}{16}\right)\times 6
Use the distributive property to multiply x by x-3.
\left(-\frac{x^{3}-2x^{2}-3x^{2}+6x}{16}\right)\times 6
Apply the distributive property by multiplying each term of x^{2}-3x by each term of x-2.
\left(-\frac{x^{3}-5x^{2}+6x}{16}\right)\times 6
Combine -2x^{2} and -3x^{2} to get -5x^{2}.
\frac{-\left(x^{3}-5x^{2}+6x\right)\times 6}{16}
Express \left(-\frac{x^{3}-5x^{2}+6x}{16}\right)\times 6 as a single fraction.
\frac{-6\left(x^{3}-5x^{2}+6x\right)}{16}
Multiply -1 and 6 to get -6.
-\frac{3}{8}\left(x^{3}-5x^{2}+6x\right)
Divide -6\left(x^{3}-5x^{2}+6x\right) by 16 to get -\frac{3}{8}\left(x^{3}-5x^{2}+6x\right).
-\frac{3}{8}x^{3}-\frac{3}{8}\left(-5\right)x^{2}-\frac{3}{8}\times 6x
Use the distributive property to multiply -\frac{3}{8} by x^{3}-5x^{2}+6x.
-\frac{3}{8}x^{3}+\frac{-3\left(-5\right)}{8}x^{2}-\frac{3}{8}\times 6x
Express -\frac{3}{8}\left(-5\right) as a single fraction.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}-\frac{3}{8}\times 6x
Multiply -3 and -5 to get 15.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}+\frac{-3\times 6}{8}x
Express -\frac{3}{8}\times 6 as a single fraction.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}+\frac{-18}{8}x
Multiply -3 and 6 to get -18.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}-\frac{9}{4}x
Reduce the fraction \frac{-18}{8} to lowest terms by extracting and canceling out 2.
\left(-\frac{\left(x^{2}-3x\right)\left(x-2\right)}{16}\right)\times 6
Use the distributive property to multiply x by x-3.
\left(-\frac{x^{3}-2x^{2}-3x^{2}+6x}{16}\right)\times 6
Apply the distributive property by multiplying each term of x^{2}-3x by each term of x-2.
\left(-\frac{x^{3}-5x^{2}+6x}{16}\right)\times 6
Combine -2x^{2} and -3x^{2} to get -5x^{2}.
\frac{-\left(x^{3}-5x^{2}+6x\right)\times 6}{16}
Express \left(-\frac{x^{3}-5x^{2}+6x}{16}\right)\times 6 as a single fraction.
\frac{-6\left(x^{3}-5x^{2}+6x\right)}{16}
Multiply -1 and 6 to get -6.
-\frac{3}{8}\left(x^{3}-5x^{2}+6x\right)
Divide -6\left(x^{3}-5x^{2}+6x\right) by 16 to get -\frac{3}{8}\left(x^{3}-5x^{2}+6x\right).
-\frac{3}{8}x^{3}-\frac{3}{8}\left(-5\right)x^{2}-\frac{3}{8}\times 6x
Use the distributive property to multiply -\frac{3}{8} by x^{3}-5x^{2}+6x.
-\frac{3}{8}x^{3}+\frac{-3\left(-5\right)}{8}x^{2}-\frac{3}{8}\times 6x
Express -\frac{3}{8}\left(-5\right) as a single fraction.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}-\frac{3}{8}\times 6x
Multiply -3 and -5 to get 15.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}+\frac{-3\times 6}{8}x
Express -\frac{3}{8}\times 6 as a single fraction.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}+\frac{-18}{8}x
Multiply -3 and 6 to get -18.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}-\frac{9}{4}x
Reduce the fraction \frac{-18}{8} to lowest terms by extracting and canceling out 2.