Evaluate
-\frac{3x\left(x-3\right)\left(x-2\right)}{8}
Expand
-\frac{3x^{3}}{8}+\frac{15x^{2}}{8}-\frac{9x}{4}
Graph
Quiz
Polynomial
5 problems similar to:
- \frac{ x \left( x-3 \right) \left( x-2 \right) }{ 16 } \times 6
Share
Copied to clipboard
\left(-\frac{\left(x^{2}-3x\right)\left(x-2\right)}{16}\right)\times 6
Use the distributive property to multiply x by x-3.
\left(-\frac{x^{3}-2x^{2}-3x^{2}+6x}{16}\right)\times 6
Apply the distributive property by multiplying each term of x^{2}-3x by each term of x-2.
\left(-\frac{x^{3}-5x^{2}+6x}{16}\right)\times 6
Combine -2x^{2} and -3x^{2} to get -5x^{2}.
\frac{-\left(x^{3}-5x^{2}+6x\right)\times 6}{16}
Express \left(-\frac{x^{3}-5x^{2}+6x}{16}\right)\times 6 as a single fraction.
\frac{-6\left(x^{3}-5x^{2}+6x\right)}{16}
Multiply -1 and 6 to get -6.
-\frac{3}{8}\left(x^{3}-5x^{2}+6x\right)
Divide -6\left(x^{3}-5x^{2}+6x\right) by 16 to get -\frac{3}{8}\left(x^{3}-5x^{2}+6x\right).
-\frac{3}{8}x^{3}-\frac{3}{8}\left(-5\right)x^{2}-\frac{3}{8}\times 6x
Use the distributive property to multiply -\frac{3}{8} by x^{3}-5x^{2}+6x.
-\frac{3}{8}x^{3}+\frac{-3\left(-5\right)}{8}x^{2}-\frac{3}{8}\times 6x
Express -\frac{3}{8}\left(-5\right) as a single fraction.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}-\frac{3}{8}\times 6x
Multiply -3 and -5 to get 15.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}+\frac{-3\times 6}{8}x
Express -\frac{3}{8}\times 6 as a single fraction.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}+\frac{-18}{8}x
Multiply -3 and 6 to get -18.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}-\frac{9}{4}x
Reduce the fraction \frac{-18}{8} to lowest terms by extracting and canceling out 2.
\left(-\frac{\left(x^{2}-3x\right)\left(x-2\right)}{16}\right)\times 6
Use the distributive property to multiply x by x-3.
\left(-\frac{x^{3}-2x^{2}-3x^{2}+6x}{16}\right)\times 6
Apply the distributive property by multiplying each term of x^{2}-3x by each term of x-2.
\left(-\frac{x^{3}-5x^{2}+6x}{16}\right)\times 6
Combine -2x^{2} and -3x^{2} to get -5x^{2}.
\frac{-\left(x^{3}-5x^{2}+6x\right)\times 6}{16}
Express \left(-\frac{x^{3}-5x^{2}+6x}{16}\right)\times 6 as a single fraction.
\frac{-6\left(x^{3}-5x^{2}+6x\right)}{16}
Multiply -1 and 6 to get -6.
-\frac{3}{8}\left(x^{3}-5x^{2}+6x\right)
Divide -6\left(x^{3}-5x^{2}+6x\right) by 16 to get -\frac{3}{8}\left(x^{3}-5x^{2}+6x\right).
-\frac{3}{8}x^{3}-\frac{3}{8}\left(-5\right)x^{2}-\frac{3}{8}\times 6x
Use the distributive property to multiply -\frac{3}{8} by x^{3}-5x^{2}+6x.
-\frac{3}{8}x^{3}+\frac{-3\left(-5\right)}{8}x^{2}-\frac{3}{8}\times 6x
Express -\frac{3}{8}\left(-5\right) as a single fraction.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}-\frac{3}{8}\times 6x
Multiply -3 and -5 to get 15.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}+\frac{-3\times 6}{8}x
Express -\frac{3}{8}\times 6 as a single fraction.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}+\frac{-18}{8}x
Multiply -3 and 6 to get -18.
-\frac{3}{8}x^{3}+\frac{15}{8}x^{2}-\frac{9}{4}x
Reduce the fraction \frac{-18}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}