Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-\frac{7}{8}x^{7}x^{6}}{-\frac{5}{2}}xx^{5}x
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
\frac{-\frac{7}{8}x^{13}}{-\frac{5}{2}}xx^{5}x
To multiply powers of the same base, add their exponents. Add 7 and 6 to get 13.
\frac{-\frac{7}{8}x^{13}}{-\frac{5}{2}}x^{6}x
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
\frac{-\frac{7}{8}x^{13}}{-\frac{5}{2}}x^{7}
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
\frac{-\frac{7}{8}x^{13}\times 2}{-5}x^{7}
Divide -\frac{7}{8}x^{13} by -\frac{5}{2} by multiplying -\frac{7}{8}x^{13} by the reciprocal of -\frac{5}{2}.
\frac{-\frac{7}{4}x^{13}}{-5}x^{7}
Multiply -\frac{7}{8} and 2 to get -\frac{7}{4}.
\frac{7}{20}x^{13}x^{7}
Divide -\frac{7}{4}x^{13} by -5 to get \frac{7}{20}x^{13}.
\frac{7}{20}x^{20}
To multiply powers of the same base, add their exponents. Add 13 and 7 to get 20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{7}{8}x^{7}x^{6}}{-\frac{5}{2}}xx^{5}x)
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{7}{8}x^{13}}{-\frac{5}{2}}xx^{5}x)
To multiply powers of the same base, add their exponents. Add 7 and 6 to get 13.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{7}{8}x^{13}}{-\frac{5}{2}}x^{6}x)
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{7}{8}x^{13}}{-\frac{5}{2}}x^{7})
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{7}{8}x^{13}\times 2}{-5}x^{7})
Divide -\frac{7}{8}x^{13} by -\frac{5}{2} by multiplying -\frac{7}{8}x^{13} by the reciprocal of -\frac{5}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{7}{4}x^{13}}{-5}x^{7})
Multiply -\frac{7}{8} and 2 to get -\frac{7}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7}{20}x^{13}x^{7})
Divide -\frac{7}{4}x^{13} by -5 to get \frac{7}{20}x^{13}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7}{20}x^{20})
To multiply powers of the same base, add their exponents. Add 13 and 7 to get 20.
20\times \frac{7}{20}x^{20-1}
The derivative of ax^{n} is nax^{n-1}.
7x^{20-1}
Multiply 20 times \frac{7}{20}.
7x^{19}
Subtract 1 from 20.