Solve for x
x = \frac{22}{5} = 4\frac{2}{5} = 4.4
Graph
Share
Copied to clipboard
-\frac{5}{2}x+\frac{2}{3}+\frac{5}{3}x=-3
Add \frac{5}{3}x to both sides.
-\frac{5}{6}x+\frac{2}{3}=-3
Combine -\frac{5}{2}x and \frac{5}{3}x to get -\frac{5}{6}x.
-\frac{5}{6}x=-3-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
-\frac{5}{6}x=-\frac{9}{3}-\frac{2}{3}
Convert -3 to fraction -\frac{9}{3}.
-\frac{5}{6}x=\frac{-9-2}{3}
Since -\frac{9}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{6}x=-\frac{11}{3}
Subtract 2 from -9 to get -11.
x=-\frac{11}{3}\left(-\frac{6}{5}\right)
Multiply both sides by -\frac{6}{5}, the reciprocal of -\frac{5}{6}.
x=\frac{-11\left(-6\right)}{3\times 5}
Multiply -\frac{11}{3} times -\frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{66}{15}
Do the multiplications in the fraction \frac{-11\left(-6\right)}{3\times 5}.
x=\frac{22}{5}
Reduce the fraction \frac{66}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}