Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-\frac{4a}{3a-16}\right)x\times 4a\left(3a-16\right)=\left(3a-16\right)\left(3a-16\right)x+4a\left(3a-16\right)\times 4
Multiply both sides of the equation by 4a\left(3a-16\right), the least common multiple of 3a-16,4a.
\left(-\frac{4a}{3a-16}\right)x\times 4a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Multiply 3a-16 and 3a-16 to get \left(3a-16\right)^{2}.
\frac{-4ax}{3a-16}\times 4a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \left(-\frac{4a}{3a-16}\right)x as a single fraction.
\frac{-4ax\times 4}{3a-16}a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax}{3a-16}\times 4 as a single fraction.
\frac{-4ax\times 4a}{3a-16}\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax\times 4}{3a-16}a as a single fraction.
\frac{-4ax\times 4a\left(3a-16\right)}{3a-16}=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax\times 4a}{3a-16}\left(3a-16\right) as a single fraction.
-4\times 4aax=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Cancel out 3a-16 in both numerator and denominator.
-4\times 4a^{2}x=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Multiply a and a to get a^{2}.
-4\times 4a^{2}x=\left(9a^{2}-96a+256\right)x+4a\left(3a-16\right)\times 4
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a-16\right)^{2}.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+4a\left(3a-16\right)\times 4
Use the distributive property to multiply 9a^{2}-96a+256 by x.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+16a\left(3a-16\right)
Multiply 4 and 4 to get 16.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+48a^{2}-256a
Use the distributive property to multiply 16a by 3a-16.
-16a^{2}x=9a^{2}x-96ax+256x+48a^{2}-256a
Multiply -4 and 4 to get -16.
-16a^{2}x-9a^{2}x=-96ax+256x+48a^{2}-256a
Subtract 9a^{2}x from both sides.
-25a^{2}x=-96ax+256x+48a^{2}-256a
Combine -16a^{2}x and -9a^{2}x to get -25a^{2}x.
-25a^{2}x+96ax=256x+48a^{2}-256a
Add 96ax to both sides.
-25a^{2}x+96ax-256x=48a^{2}-256a
Subtract 256x from both sides.
\left(-25a^{2}+96a-256\right)x=48a^{2}-256a
Combine all terms containing x.
\frac{\left(-25a^{2}+96a-256\right)x}{-25a^{2}+96a-256}=\frac{16a\left(3a-16\right)}{-25a^{2}+96a-256}
Divide both sides by -25a^{2}+96a-256.
x=\frac{16a\left(3a-16\right)}{-25a^{2}+96a-256}
Dividing by -25a^{2}+96a-256 undoes the multiplication by -25a^{2}+96a-256.
\left(-\frac{4a}{3a-16}\right)x\times 4a\left(3a-16\right)=\left(3a-16\right)\left(3a-16\right)x+4a\left(3a-16\right)\times 4
Multiply both sides of the equation by 4a\left(3a-16\right), the least common multiple of 3a-16,4a.
\left(-\frac{4a}{3a-16}\right)x\times 4a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Multiply 3a-16 and 3a-16 to get \left(3a-16\right)^{2}.
\frac{-4ax}{3a-16}\times 4a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \left(-\frac{4a}{3a-16}\right)x as a single fraction.
\frac{-4ax\times 4}{3a-16}a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax}{3a-16}\times 4 as a single fraction.
\frac{-4ax\times 4a}{3a-16}\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax\times 4}{3a-16}a as a single fraction.
\frac{-4ax\times 4a\left(3a-16\right)}{3a-16}=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax\times 4a}{3a-16}\left(3a-16\right) as a single fraction.
-4\times 4aax=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Cancel out 3a-16 in both numerator and denominator.
-4\times 4a^{2}x=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Multiply a and a to get a^{2}.
-4\times 4a^{2}x=\left(9a^{2}-96a+256\right)x+4a\left(3a-16\right)\times 4
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a-16\right)^{2}.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+4a\left(3a-16\right)\times 4
Use the distributive property to multiply 9a^{2}-96a+256 by x.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+16a\left(3a-16\right)
Multiply 4 and 4 to get 16.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+48a^{2}-256a
Use the distributive property to multiply 16a by 3a-16.
-16a^{2}x=9a^{2}x-96ax+256x+48a^{2}-256a
Multiply -4 and 4 to get -16.
-16a^{2}x-9a^{2}x=-96ax+256x+48a^{2}-256a
Subtract 9a^{2}x from both sides.
-25a^{2}x=-96ax+256x+48a^{2}-256a
Combine -16a^{2}x and -9a^{2}x to get -25a^{2}x.
-25a^{2}x+96ax=256x+48a^{2}-256a
Add 96ax to both sides.
-25a^{2}x+96ax-256x=48a^{2}-256a
Subtract 256x from both sides.
\left(-25a^{2}+96a-256\right)x=48a^{2}-256a
Combine all terms containing x.
\frac{\left(-25a^{2}+96a-256\right)x}{-25a^{2}+96a-256}=\frac{16a\left(3a-16\right)}{-25a^{2}+96a-256}
Divide both sides by -25a^{2}+96a-256.
x=\frac{16a\left(3a-16\right)}{-25a^{2}+96a-256}
Dividing by -25a^{2}+96a-256 undoes the multiplication by -25a^{2}+96a-256.