Solve for x (complex solution)
x=-\frac{16a\left(16-3a\right)}{-25a^{2}+96a-256}
a\neq \frac{48}{25}-\frac{64}{25}i\text{ and }a\neq \frac{48}{25}+\frac{64}{25}i\text{ and }a\neq \frac{16}{3}\text{ and }a\neq 0
Solve for x
x=-\frac{16a\left(16-3a\right)}{-25a^{2}+96a-256}
a\neq \frac{16}{3}\text{ and }a\neq 0
Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{16\left(-\sqrt{4-x^{2}}+2\right)}{-3\sqrt{4-x^{2}}+4x+6}\text{, }&x\neq 0\\a=\frac{16\left(\sqrt{4-x^{2}}+2\right)}{3\sqrt{4-x^{2}}+4x+6}\text{, }&x\neq 0\text{ and }x\neq -\frac{48}{25}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{16\left(-\sqrt{4-x^{2}}+2\right)}{-3\sqrt{4-x^{2}}+4x+6}\text{, }&x\neq 0\text{ and }|x|\leq 2\\a=\frac{16\left(\sqrt{4-x^{2}}+2\right)}{3\sqrt{4-x^{2}}+4x+6}\text{, }&x\neq -\frac{48}{25}\text{ and }|x|\leq 2\text{ and }x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(-\frac{4a}{3a-16}\right)x\times 4a\left(3a-16\right)=\left(3a-16\right)\left(3a-16\right)x+4a\left(3a-16\right)\times 4
Multiply both sides of the equation by 4a\left(3a-16\right), the least common multiple of 3a-16,4a.
\left(-\frac{4a}{3a-16}\right)x\times 4a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Multiply 3a-16 and 3a-16 to get \left(3a-16\right)^{2}.
\frac{-4ax}{3a-16}\times 4a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \left(-\frac{4a}{3a-16}\right)x as a single fraction.
\frac{-4ax\times 4}{3a-16}a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax}{3a-16}\times 4 as a single fraction.
\frac{-4ax\times 4a}{3a-16}\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax\times 4}{3a-16}a as a single fraction.
\frac{-4ax\times 4a\left(3a-16\right)}{3a-16}=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax\times 4a}{3a-16}\left(3a-16\right) as a single fraction.
-4\times 4aax=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Cancel out 3a-16 in both numerator and denominator.
-4\times 4a^{2}x=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Multiply a and a to get a^{2}.
-4\times 4a^{2}x=\left(9a^{2}-96a+256\right)x+4a\left(3a-16\right)\times 4
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a-16\right)^{2}.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+4a\left(3a-16\right)\times 4
Use the distributive property to multiply 9a^{2}-96a+256 by x.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+16a\left(3a-16\right)
Multiply 4 and 4 to get 16.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+48a^{2}-256a
Use the distributive property to multiply 16a by 3a-16.
-16a^{2}x=9a^{2}x-96ax+256x+48a^{2}-256a
Multiply -4 and 4 to get -16.
-16a^{2}x-9a^{2}x=-96ax+256x+48a^{2}-256a
Subtract 9a^{2}x from both sides.
-25a^{2}x=-96ax+256x+48a^{2}-256a
Combine -16a^{2}x and -9a^{2}x to get -25a^{2}x.
-25a^{2}x+96ax=256x+48a^{2}-256a
Add 96ax to both sides.
-25a^{2}x+96ax-256x=48a^{2}-256a
Subtract 256x from both sides.
\left(-25a^{2}+96a-256\right)x=48a^{2}-256a
Combine all terms containing x.
\frac{\left(-25a^{2}+96a-256\right)x}{-25a^{2}+96a-256}=\frac{16a\left(3a-16\right)}{-25a^{2}+96a-256}
Divide both sides by -25a^{2}+96a-256.
x=\frac{16a\left(3a-16\right)}{-25a^{2}+96a-256}
Dividing by -25a^{2}+96a-256 undoes the multiplication by -25a^{2}+96a-256.
\left(-\frac{4a}{3a-16}\right)x\times 4a\left(3a-16\right)=\left(3a-16\right)\left(3a-16\right)x+4a\left(3a-16\right)\times 4
Multiply both sides of the equation by 4a\left(3a-16\right), the least common multiple of 3a-16,4a.
\left(-\frac{4a}{3a-16}\right)x\times 4a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Multiply 3a-16 and 3a-16 to get \left(3a-16\right)^{2}.
\frac{-4ax}{3a-16}\times 4a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \left(-\frac{4a}{3a-16}\right)x as a single fraction.
\frac{-4ax\times 4}{3a-16}a\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax}{3a-16}\times 4 as a single fraction.
\frac{-4ax\times 4a}{3a-16}\left(3a-16\right)=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax\times 4}{3a-16}a as a single fraction.
\frac{-4ax\times 4a\left(3a-16\right)}{3a-16}=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Express \frac{-4ax\times 4a}{3a-16}\left(3a-16\right) as a single fraction.
-4\times 4aax=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Cancel out 3a-16 in both numerator and denominator.
-4\times 4a^{2}x=\left(3a-16\right)^{2}x+4a\left(3a-16\right)\times 4
Multiply a and a to get a^{2}.
-4\times 4a^{2}x=\left(9a^{2}-96a+256\right)x+4a\left(3a-16\right)\times 4
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a-16\right)^{2}.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+4a\left(3a-16\right)\times 4
Use the distributive property to multiply 9a^{2}-96a+256 by x.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+16a\left(3a-16\right)
Multiply 4 and 4 to get 16.
-4\times 4a^{2}x=9a^{2}x-96ax+256x+48a^{2}-256a
Use the distributive property to multiply 16a by 3a-16.
-16a^{2}x=9a^{2}x-96ax+256x+48a^{2}-256a
Multiply -4 and 4 to get -16.
-16a^{2}x-9a^{2}x=-96ax+256x+48a^{2}-256a
Subtract 9a^{2}x from both sides.
-25a^{2}x=-96ax+256x+48a^{2}-256a
Combine -16a^{2}x and -9a^{2}x to get -25a^{2}x.
-25a^{2}x+96ax=256x+48a^{2}-256a
Add 96ax to both sides.
-25a^{2}x+96ax-256x=48a^{2}-256a
Subtract 256x from both sides.
\left(-25a^{2}+96a-256\right)x=48a^{2}-256a
Combine all terms containing x.
\frac{\left(-25a^{2}+96a-256\right)x}{-25a^{2}+96a-256}=\frac{16a\left(3a-16\right)}{-25a^{2}+96a-256}
Divide both sides by -25a^{2}+96a-256.
x=\frac{16a\left(3a-16\right)}{-25a^{2}+96a-256}
Dividing by -25a^{2}+96a-256 undoes the multiplication by -25a^{2}+96a-256.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}