Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{49}{8}=2x^{2}-7x
Use the distributive property to multiply x by 2x-7.
2x^{2}-7x=-\frac{49}{8}
Swap sides so that all variable terms are on the left hand side.
2x^{2}-7x+\frac{49}{8}=0
Add \frac{49}{8} to both sides.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times \frac{49}{8}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and \frac{49}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times \frac{49}{8}}}{2\times 2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\times \frac{49}{8}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-7\right)±\sqrt{49-49}}{2\times 2}
Multiply -8 times \frac{49}{8}.
x=\frac{-\left(-7\right)±\sqrt{0}}{2\times 2}
Add 49 to -49.
x=-\frac{-7}{2\times 2}
Take the square root of 0.
x=\frac{7}{2\times 2}
The opposite of -7 is 7.
x=\frac{7}{4}
Multiply 2 times 2.
-\frac{49}{8}=2x^{2}-7x
Use the distributive property to multiply x by 2x-7.
2x^{2}-7x=-\frac{49}{8}
Swap sides so that all variable terms are on the left hand side.
\frac{2x^{2}-7x}{2}=-\frac{\frac{49}{8}}{2}
Divide both sides by 2.
x^{2}-\frac{7}{2}x=-\frac{\frac{49}{8}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{7}{2}x=-\frac{49}{16}
Divide -\frac{49}{8} by 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{49}{16}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{-49+49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=0
Add -\frac{49}{16} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=0
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{7}{4}=0 x-\frac{7}{4}=0
Simplify.
x=\frac{7}{4} x=\frac{7}{4}
Add \frac{7}{4} to both sides of the equation.
x=\frac{7}{4}
The equation is now solved. Solutions are the same.