Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

-\frac{3}{4}h^{2}+\frac{3}{2}h+6=-\frac{15}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{3}{4}h^{2}+\frac{3}{2}h+6-\left(-\frac{15}{4}\right)=-\frac{15}{4}-\left(-\frac{15}{4}\right)
Add \frac{15}{4} to both sides of the equation.
-\frac{3}{4}h^{2}+\frac{3}{2}h+6-\left(-\frac{15}{4}\right)=0
Subtracting -\frac{15}{4} from itself leaves 0.
-\frac{3}{4}h^{2}+\frac{3}{2}h+\frac{39}{4}=0
Subtract -\frac{15}{4} from 6.
h=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{3}{4}\right)\times \frac{39}{4}}}{2\left(-\frac{3}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{4} for a, \frac{3}{2} for b, and \frac{39}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{3}{4}\right)\times \frac{39}{4}}}{2\left(-\frac{3}{4}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
h=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+3\times \frac{39}{4}}}{2\left(-\frac{3}{4}\right)}
Multiply -4 times -\frac{3}{4}.
h=\frac{-\frac{3}{2}±\sqrt{\frac{9+117}{4}}}{2\left(-\frac{3}{4}\right)}
Multiply 3 times \frac{39}{4}.
h=\frac{-\frac{3}{2}±\sqrt{\frac{63}{2}}}{2\left(-\frac{3}{4}\right)}
Add \frac{9}{4} to \frac{117}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
h=\frac{-\frac{3}{2}±\frac{3\sqrt{14}}{2}}{2\left(-\frac{3}{4}\right)}
Take the square root of \frac{63}{2}.
h=\frac{-\frac{3}{2}±\frac{3\sqrt{14}}{2}}{-\frac{3}{2}}
Multiply 2 times -\frac{3}{4}.
h=\frac{3\sqrt{14}-3}{-\frac{3}{2}\times 2}
Now solve the equation h=\frac{-\frac{3}{2}±\frac{3\sqrt{14}}{2}}{-\frac{3}{2}} when ± is plus. Add -\frac{3}{2} to \frac{3\sqrt{14}}{2}.
h=1-\sqrt{14}
Divide \frac{-3+3\sqrt{14}}{2} by -\frac{3}{2} by multiplying \frac{-3+3\sqrt{14}}{2} by the reciprocal of -\frac{3}{2}.
h=\frac{-3\sqrt{14}-3}{-\frac{3}{2}\times 2}
Now solve the equation h=\frac{-\frac{3}{2}±\frac{3\sqrt{14}}{2}}{-\frac{3}{2}} when ± is minus. Subtract \frac{3\sqrt{14}}{2} from -\frac{3}{2}.
h=\sqrt{14}+1
Divide \frac{-3-3\sqrt{14}}{2} by -\frac{3}{2} by multiplying \frac{-3-3\sqrt{14}}{2} by the reciprocal of -\frac{3}{2}.
h=1-\sqrt{14} h=\sqrt{14}+1
The equation is now solved.
-\frac{3}{4}h^{2}+\frac{3}{2}h+6=-\frac{15}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{3}{4}h^{2}+\frac{3}{2}h+6-6=-\frac{15}{4}-6
Subtract 6 from both sides of the equation.
-\frac{3}{4}h^{2}+\frac{3}{2}h=-\frac{15}{4}-6
Subtracting 6 from itself leaves 0.
-\frac{3}{4}h^{2}+\frac{3}{2}h=-\frac{39}{4}
Subtract 6 from -\frac{15}{4}.
\frac{-\frac{3}{4}h^{2}+\frac{3}{2}h}{-\frac{3}{4}}=-\frac{\frac{39}{4}}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
h^{2}+\frac{\frac{3}{2}}{-\frac{3}{4}}h=-\frac{\frac{39}{4}}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
h^{2}-2h=-\frac{\frac{39}{4}}{-\frac{3}{4}}
Divide \frac{3}{2} by -\frac{3}{4} by multiplying \frac{3}{2} by the reciprocal of -\frac{3}{4}.
h^{2}-2h=13
Divide -\frac{39}{4} by -\frac{3}{4} by multiplying -\frac{39}{4} by the reciprocal of -\frac{3}{4}.
h^{2}-2h+1=13+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}-2h+1=14
Add 13 to 1.
\left(h-1\right)^{2}=14
Factor h^{2}-2h+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-1\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
h-1=\sqrt{14} h-1=-\sqrt{14}
Simplify.
h=\sqrt{14}+1 h=1-\sqrt{14}
Add 1 to both sides of the equation.