Solve for x
x>-11
Graph
Share
Copied to clipboard
-\frac{2}{3}x-\frac{2}{3}\times 5-1<3
Use the distributive property to multiply -\frac{2}{3} by x+5.
-\frac{2}{3}x+\frac{-2\times 5}{3}-1<3
Express -\frac{2}{3}\times 5 as a single fraction.
-\frac{2}{3}x+\frac{-10}{3}-1<3
Multiply -2 and 5 to get -10.
-\frac{2}{3}x-\frac{10}{3}-1<3
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
-\frac{2}{3}x-\frac{10}{3}-\frac{3}{3}<3
Convert 1 to fraction \frac{3}{3}.
-\frac{2}{3}x+\frac{-10-3}{3}<3
Since -\frac{10}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{3}x-\frac{13}{3}<3
Subtract 3 from -10 to get -13.
-\frac{2}{3}x<3+\frac{13}{3}
Add \frac{13}{3} to both sides.
-\frac{2}{3}x<\frac{9}{3}+\frac{13}{3}
Convert 3 to fraction \frac{9}{3}.
-\frac{2}{3}x<\frac{9+13}{3}
Since \frac{9}{3} and \frac{13}{3} have the same denominator, add them by adding their numerators.
-\frac{2}{3}x<\frac{22}{3}
Add 9 and 13 to get 22.
x>\frac{22}{3}\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}. Since -\frac{2}{3} is negative, the inequality direction is changed.
x>\frac{22\left(-3\right)}{3\times 2}
Multiply \frac{22}{3} times -\frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x>\frac{-66}{6}
Do the multiplications in the fraction \frac{22\left(-3\right)}{3\times 2}.
x>-11
Divide -66 by 6 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}