Evaluate
-\frac{629}{240}\approx -2.620833333
Factor
-\frac{629}{240} = -2\frac{149}{240} = -2.620833333333333
Share
Copied to clipboard
-\frac{17}{20}\left(\frac{14}{6}-\frac{27}{6}+\frac{21}{4}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{7}{3} and \frac{9}{2} to fractions with denominator 6.
-\frac{17}{20}\left(\frac{14-27}{6}+\frac{21}{4}\right)
Since \frac{14}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{20}\left(-\frac{13}{6}+\frac{21}{4}\right)
Subtract 27 from 14 to get -13.
-\frac{17}{20}\left(-\frac{26}{12}+\frac{63}{12}\right)
Least common multiple of 6 and 4 is 12. Convert -\frac{13}{6} and \frac{21}{4} to fractions with denominator 12.
-\frac{17}{20}\times \frac{-26+63}{12}
Since -\frac{26}{12} and \frac{63}{12} have the same denominator, add them by adding their numerators.
-\frac{17}{20}\times \frac{37}{12}
Add -26 and 63 to get 37.
\frac{-17\times 37}{20\times 12}
Multiply -\frac{17}{20} times \frac{37}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{-629}{240}
Do the multiplications in the fraction \frac{-17\times 37}{20\times 12}.
-\frac{629}{240}
Fraction \frac{-629}{240} can be rewritten as -\frac{629}{240} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}