Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{4}x+\frac{15}{8}+x^{2}=-2x+3
Add x^{2} to both sides.
-\frac{1}{4}x+\frac{15}{8}+x^{2}+2x=3
Add 2x to both sides.
\frac{7}{4}x+\frac{15}{8}+x^{2}=3
Combine -\frac{1}{4}x and 2x to get \frac{7}{4}x.
\frac{7}{4}x+\frac{15}{8}+x^{2}-3=0
Subtract 3 from both sides.
\frac{7}{4}x-\frac{9}{8}+x^{2}=0
Subtract 3 from \frac{15}{8} to get -\frac{9}{8}.
x^{2}+\frac{7}{4}x-\frac{9}{8}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{7}{4}±\sqrt{\left(\frac{7}{4}\right)^{2}-4\left(-\frac{9}{8}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{7}{4} for b, and -\frac{9}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}-4\left(-\frac{9}{8}\right)}}{2}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}+\frac{9}{2}}}{2}
Multiply -4 times -\frac{9}{8}.
x=\frac{-\frac{7}{4}±\sqrt{\frac{121}{16}}}{2}
Add \frac{49}{16} to \frac{9}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{7}{4}±\frac{11}{4}}{2}
Take the square root of \frac{121}{16}.
x=\frac{1}{2}
Now solve the equation x=\frac{-\frac{7}{4}±\frac{11}{4}}{2} when ± is plus. Add -\frac{7}{4} to \frac{11}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{\frac{9}{2}}{2}
Now solve the equation x=\frac{-\frac{7}{4}±\frac{11}{4}}{2} when ± is minus. Subtract \frac{11}{4} from -\frac{7}{4} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{9}{4}
Divide -\frac{9}{2} by 2.
x=\frac{1}{2} x=-\frac{9}{4}
The equation is now solved.
-\frac{1}{4}x+\frac{15}{8}+x^{2}=-2x+3
Add x^{2} to both sides.
-\frac{1}{4}x+\frac{15}{8}+x^{2}+2x=3
Add 2x to both sides.
\frac{7}{4}x+\frac{15}{8}+x^{2}=3
Combine -\frac{1}{4}x and 2x to get \frac{7}{4}x.
\frac{7}{4}x+x^{2}=3-\frac{15}{8}
Subtract \frac{15}{8} from both sides.
\frac{7}{4}x+x^{2}=\frac{9}{8}
Subtract \frac{15}{8} from 3 to get \frac{9}{8}.
x^{2}+\frac{7}{4}x=\frac{9}{8}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=\frac{9}{8}+\left(\frac{7}{8}\right)^{2}
Divide \frac{7}{4}, the coefficient of the x term, by 2 to get \frac{7}{8}. Then add the square of \frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{9}{8}+\frac{49}{64}
Square \frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{121}{64}
Add \frac{9}{8} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{8}\right)^{2}=\frac{121}{64}
Factor x^{2}+\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Take the square root of both sides of the equation.
x+\frac{7}{8}=\frac{11}{8} x+\frac{7}{8}=-\frac{11}{8}
Simplify.
x=\frac{1}{2} x=-\frac{9}{4}
Subtract \frac{7}{8} from both sides of the equation.