Evaluate
\frac{\left(x+2\right)\left(x+19\right)}{28}
Expand
\frac{x^{2}}{28}+\frac{3x}{4}+\frac{19}{14}
Graph
Share
Copied to clipboard
\left(-\frac{1}{4}x-\frac{1}{4}\times 2\right)\left(x-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply -\frac{1}{4} by x+2.
\left(-\frac{1}{4}x+\frac{-2}{4}\right)\left(x-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Express -\frac{1}{4}\times 2 as a single fraction.
\left(-\frac{1}{4}x-\frac{1}{2}\right)\left(x-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
-\frac{1}{4}xx-\frac{1}{4}x\left(-5\right)-\frac{1}{2}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Apply the distributive property by multiplying each term of -\frac{1}{4}x-\frac{1}{2} by each term of x-5.
-\frac{1}{4}x^{2}-\frac{1}{4}x\left(-5\right)-\frac{1}{2}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Multiply x and x to get x^{2}.
-\frac{1}{4}x^{2}+\frac{-\left(-5\right)}{4}x-\frac{1}{2}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Express -\frac{1}{4}\left(-5\right) as a single fraction.
-\frac{1}{4}x^{2}+\frac{5}{4}x-\frac{1}{2}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Multiply -1 and -5 to get 5.
-\frac{1}{4}x^{2}+\frac{3}{4}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Combine \frac{5}{4}x and -\frac{1}{2}x to get \frac{3}{4}x.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{-\left(-5\right)}{2}+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Express -\frac{1}{2}\left(-5\right) as a single fraction.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Multiply -1 and -5 to get 5.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\left(\frac{2}{7}x+\frac{2}{7}\times 2\right)\left(x-2\right)
Use the distributive property to multiply \frac{2}{7} by x+2.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\left(\frac{2}{7}x+\frac{2\times 2}{7}\right)\left(x-2\right)
Express \frac{2}{7}\times 2 as a single fraction.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\left(\frac{2}{7}x+\frac{4}{7}\right)\left(x-2\right)
Multiply 2 and 2 to get 4.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}xx+\frac{2}{7}x\left(-2\right)+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Apply the distributive property by multiplying each term of \frac{2}{7}x+\frac{4}{7} by each term of x-2.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{2}{7}x\left(-2\right)+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Multiply x and x to get x^{2}.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{2\left(-2\right)}{7}x+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Express \frac{2}{7}\left(-2\right) as a single fraction.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{-4}{7}x+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Multiply 2 and -2 to get -4.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}-\frac{4}{7}x+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Fraction \frac{-4}{7} can be rewritten as -\frac{4}{7} by extracting the negative sign.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{4}{7}\left(-2\right)
Combine -\frac{4}{7}x and \frac{4}{7}x to get 0.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{4\left(-2\right)}{7}
Express \frac{4}{7}\left(-2\right) as a single fraction.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{-8}{7}
Multiply 4 and -2 to get -8.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}-\frac{8}{7}
Fraction \frac{-8}{7} can be rewritten as -\frac{8}{7} by extracting the negative sign.
\frac{1}{28}x^{2}+\frac{3}{4}x+\frac{5}{2}-\frac{8}{7}
Combine -\frac{1}{4}x^{2} and \frac{2}{7}x^{2} to get \frac{1}{28}x^{2}.
\frac{1}{28}x^{2}+\frac{3}{4}x+\frac{35}{14}-\frac{16}{14}
Least common multiple of 2 and 7 is 14. Convert \frac{5}{2} and \frac{8}{7} to fractions with denominator 14.
\frac{1}{28}x^{2}+\frac{3}{4}x+\frac{35-16}{14}
Since \frac{35}{14} and \frac{16}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{28}x^{2}+\frac{3}{4}x+\frac{19}{14}
Subtract 16 from 35 to get 19.
\left(-\frac{1}{4}x-\frac{1}{4}\times 2\right)\left(x-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Use the distributive property to multiply -\frac{1}{4} by x+2.
\left(-\frac{1}{4}x+\frac{-2}{4}\right)\left(x-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Express -\frac{1}{4}\times 2 as a single fraction.
\left(-\frac{1}{4}x-\frac{1}{2}\right)\left(x-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
-\frac{1}{4}xx-\frac{1}{4}x\left(-5\right)-\frac{1}{2}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Apply the distributive property by multiplying each term of -\frac{1}{4}x-\frac{1}{2} by each term of x-5.
-\frac{1}{4}x^{2}-\frac{1}{4}x\left(-5\right)-\frac{1}{2}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Multiply x and x to get x^{2}.
-\frac{1}{4}x^{2}+\frac{-\left(-5\right)}{4}x-\frac{1}{2}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Express -\frac{1}{4}\left(-5\right) as a single fraction.
-\frac{1}{4}x^{2}+\frac{5}{4}x-\frac{1}{2}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Multiply -1 and -5 to get 5.
-\frac{1}{4}x^{2}+\frac{3}{4}x-\frac{1}{2}\left(-5\right)+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Combine \frac{5}{4}x and -\frac{1}{2}x to get \frac{3}{4}x.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{-\left(-5\right)}{2}+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Express -\frac{1}{2}\left(-5\right) as a single fraction.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}\left(x+2\right)\left(x-2\right)
Multiply -1 and -5 to get 5.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\left(\frac{2}{7}x+\frac{2}{7}\times 2\right)\left(x-2\right)
Use the distributive property to multiply \frac{2}{7} by x+2.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\left(\frac{2}{7}x+\frac{2\times 2}{7}\right)\left(x-2\right)
Express \frac{2}{7}\times 2 as a single fraction.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\left(\frac{2}{7}x+\frac{4}{7}\right)\left(x-2\right)
Multiply 2 and 2 to get 4.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}xx+\frac{2}{7}x\left(-2\right)+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Apply the distributive property by multiplying each term of \frac{2}{7}x+\frac{4}{7} by each term of x-2.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{2}{7}x\left(-2\right)+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Multiply x and x to get x^{2}.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{2\left(-2\right)}{7}x+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Express \frac{2}{7}\left(-2\right) as a single fraction.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{-4}{7}x+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Multiply 2 and -2 to get -4.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}-\frac{4}{7}x+\frac{4}{7}x+\frac{4}{7}\left(-2\right)
Fraction \frac{-4}{7} can be rewritten as -\frac{4}{7} by extracting the negative sign.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{4}{7}\left(-2\right)
Combine -\frac{4}{7}x and \frac{4}{7}x to get 0.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{4\left(-2\right)}{7}
Express \frac{4}{7}\left(-2\right) as a single fraction.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}+\frac{-8}{7}
Multiply 4 and -2 to get -8.
-\frac{1}{4}x^{2}+\frac{3}{4}x+\frac{5}{2}+\frac{2}{7}x^{2}-\frac{8}{7}
Fraction \frac{-8}{7} can be rewritten as -\frac{8}{7} by extracting the negative sign.
\frac{1}{28}x^{2}+\frac{3}{4}x+\frac{5}{2}-\frac{8}{7}
Combine -\frac{1}{4}x^{2} and \frac{2}{7}x^{2} to get \frac{1}{28}x^{2}.
\frac{1}{28}x^{2}+\frac{3}{4}x+\frac{35}{14}-\frac{16}{14}
Least common multiple of 2 and 7 is 14. Convert \frac{5}{2} and \frac{8}{7} to fractions with denominator 14.
\frac{1}{28}x^{2}+\frac{3}{4}x+\frac{35-16}{14}
Since \frac{35}{14} and \frac{16}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{28}x^{2}+\frac{3}{4}x+\frac{19}{14}
Subtract 16 from 35 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}