Evaluate
-\frac{\left(2x+1\right)^{3}}{32}-\frac{1}{3}
Expand
-\frac{x^{3}}{4}-\frac{3x^{2}}{8}-\frac{3x}{16}-\frac{35}{96}
Graph
Share
Copied to clipboard
-\frac{1}{4}\left(x^{3}+\frac{3}{2}x^{2}+\frac{3}{4}x+\frac{1}{8}\right)-\frac{1}{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+\frac{1}{2}\right)^{3}.
-\frac{1}{4}x^{3}-\frac{3}{8}x^{2}-\frac{3}{16}x-\frac{1}{32}-\frac{1}{3}
Use the distributive property to multiply -\frac{1}{4} by x^{3}+\frac{3}{2}x^{2}+\frac{3}{4}x+\frac{1}{8}.
-\frac{1}{4}x^{3}-\frac{3}{8}x^{2}-\frac{3}{16}x-\frac{35}{96}
Subtract \frac{1}{3} from -\frac{1}{32} to get -\frac{35}{96}.
-\frac{1}{4}\left(x^{3}+\frac{3}{2}x^{2}+\frac{3}{4}x+\frac{1}{8}\right)-\frac{1}{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+\frac{1}{2}\right)^{3}.
-\frac{1}{4}x^{3}-\frac{3}{8}x^{2}-\frac{3}{16}x-\frac{1}{32}-\frac{1}{3}
Use the distributive property to multiply -\frac{1}{4} by x^{3}+\frac{3}{2}x^{2}+\frac{3}{4}x+\frac{1}{8}.
-\frac{1}{4}x^{3}-\frac{3}{8}x^{2}-\frac{3}{16}x-\frac{35}{96}
Subtract \frac{1}{3} from -\frac{1}{32} to get -\frac{35}{96}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}