- \frac{ 1 }{ 4 } \times ( { \left( \frac{ 5 \sqrt{ 10 } -8 }{ 3 } \right) }^{ 2 }
Evaluate
\frac{20\sqrt{10}}{9}-\frac{157}{18}\approx -1.694938533
Expand
\frac{20 \sqrt{10}}{9} - \frac{157}{18} = -1.694938533
Share
Copied to clipboard
-\frac{1}{4}\times \frac{\left(5\sqrt{10}-8\right)^{2}}{3^{2}}
To raise \frac{5\sqrt{10}-8}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\left(5\sqrt{10}-8\right)^{2}}{4\times 3^{2}}
Multiply -\frac{1}{4} times \frac{\left(5\sqrt{10}-8\right)^{2}}{3^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(25\left(\sqrt{10}\right)^{2}-80\sqrt{10}+64\right)}{4\times 3^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{10}-8\right)^{2}.
\frac{-\left(25\times 10-80\sqrt{10}+64\right)}{4\times 3^{2}}
The square of \sqrt{10} is 10.
\frac{-\left(250-80\sqrt{10}+64\right)}{4\times 3^{2}}
Multiply 25 and 10 to get 250.
\frac{-\left(314-80\sqrt{10}\right)}{4\times 3^{2}}
Add 250 and 64 to get 314.
\frac{-\left(314-80\sqrt{10}\right)}{4\times 9}
Calculate 3 to the power of 2 and get 9.
\frac{-\left(314-80\sqrt{10}\right)}{36}
Multiply 4 and 9 to get 36.
\frac{-314+80\sqrt{10}}{36}
To find the opposite of 314-80\sqrt{10}, find the opposite of each term.
-\frac{1}{4}\times \frac{\left(5\sqrt{10}-8\right)^{2}}{3^{2}}
To raise \frac{5\sqrt{10}-8}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\left(5\sqrt{10}-8\right)^{2}}{4\times 3^{2}}
Multiply -\frac{1}{4} times \frac{\left(5\sqrt{10}-8\right)^{2}}{3^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(25\left(\sqrt{10}\right)^{2}-80\sqrt{10}+64\right)}{4\times 3^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{10}-8\right)^{2}.
\frac{-\left(25\times 10-80\sqrt{10}+64\right)}{4\times 3^{2}}
The square of \sqrt{10} is 10.
\frac{-\left(250-80\sqrt{10}+64\right)}{4\times 3^{2}}
Multiply 25 and 10 to get 250.
\frac{-\left(314-80\sqrt{10}\right)}{4\times 3^{2}}
Add 250 and 64 to get 314.
\frac{-\left(314-80\sqrt{10}\right)}{4\times 9}
Calculate 3 to the power of 2 and get 9.
\frac{-\left(314-80\sqrt{10}\right)}{36}
Multiply 4 and 9 to get 36.
\frac{-314+80\sqrt{10}}{36}
To find the opposite of 314-80\sqrt{10}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}