Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{1}{2}hh-\frac{1}{2}h\right)\left(2h+1\right)+h\left(n+1\right)
Use the distributive property to multiply -\frac{1}{2}h by h+1.
\left(-\frac{1}{2}h^{2}-\frac{1}{2}h\right)\left(2h+1\right)+h\left(n+1\right)
Multiply h and h to get h^{2}.
-\frac{1}{2}h^{2}\times 2h-\frac{1}{2}h^{2}-\frac{1}{2}h\times 2h-\frac{1}{2}h+h\left(n+1\right)
Apply the distributive property by multiplying each term of -\frac{1}{2}h^{2}-\frac{1}{2}h by each term of 2h+1.
-\frac{1}{2}h^{3}\times 2-\frac{1}{2}h^{2}-\frac{1}{2}h\times 2h-\frac{1}{2}h+h\left(n+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-\frac{1}{2}h^{3}\times 2-\frac{1}{2}h^{2}-\frac{1}{2}h^{2}\times 2-\frac{1}{2}h+h\left(n+1\right)
Multiply h and h to get h^{2}.
-h^{3}-\frac{1}{2}h^{2}-\frac{1}{2}h^{2}\times 2-\frac{1}{2}h+h\left(n+1\right)
Cancel out 2 and 2.
-h^{3}-\frac{1}{2}h^{2}-h^{2}-\frac{1}{2}h+h\left(n+1\right)
Cancel out 2 and 2.
-h^{3}-\frac{3}{2}h^{2}-\frac{1}{2}h+h\left(n+1\right)
Combine -\frac{1}{2}h^{2} and -h^{2} to get -\frac{3}{2}h^{2}.
-h^{3}-\frac{3}{2}h^{2}-\frac{1}{2}h+hn+h
Use the distributive property to multiply h by n+1.
-h^{3}-\frac{3}{2}h^{2}+\frac{1}{2}h+hn
Combine -\frac{1}{2}h and h to get \frac{1}{2}h.
\left(-\frac{1}{2}hh-\frac{1}{2}h\right)\left(2h+1\right)+h\left(n+1\right)
Use the distributive property to multiply -\frac{1}{2}h by h+1.
\left(-\frac{1}{2}h^{2}-\frac{1}{2}h\right)\left(2h+1\right)+h\left(n+1\right)
Multiply h and h to get h^{2}.
-\frac{1}{2}h^{2}\times 2h-\frac{1}{2}h^{2}-\frac{1}{2}h\times 2h-\frac{1}{2}h+h\left(n+1\right)
Apply the distributive property by multiplying each term of -\frac{1}{2}h^{2}-\frac{1}{2}h by each term of 2h+1.
-\frac{1}{2}h^{3}\times 2-\frac{1}{2}h^{2}-\frac{1}{2}h\times 2h-\frac{1}{2}h+h\left(n+1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-\frac{1}{2}h^{3}\times 2-\frac{1}{2}h^{2}-\frac{1}{2}h^{2}\times 2-\frac{1}{2}h+h\left(n+1\right)
Multiply h and h to get h^{2}.
-h^{3}-\frac{1}{2}h^{2}-\frac{1}{2}h^{2}\times 2-\frac{1}{2}h+h\left(n+1\right)
Cancel out 2 and 2.
-h^{3}-\frac{1}{2}h^{2}-h^{2}-\frac{1}{2}h+h\left(n+1\right)
Cancel out 2 and 2.
-h^{3}-\frac{3}{2}h^{2}-\frac{1}{2}h+h\left(n+1\right)
Combine -\frac{1}{2}h^{2} and -h^{2} to get -\frac{3}{2}h^{2}.
-h^{3}-\frac{3}{2}h^{2}-\frac{1}{2}h+hn+h
Use the distributive property to multiply h by n+1.
-h^{3}-\frac{3}{2}h^{2}+\frac{1}{2}h+hn
Combine -\frac{1}{2}h and h to get \frac{1}{2}h.