Solve for a
a=5
Share
Copied to clipboard
-a\left(a-2\right)=\left(a-2\right)^{2}-\left(a+2\right)^{2}+a^{2}
Variable a cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by 2a\left(a-2\right), the least common multiple of 2,2\left(a-2\right)a.
-a^{2}+2a=\left(a-2\right)^{2}-\left(a+2\right)^{2}+a^{2}
Use the distributive property to multiply -a by a-2.
-a^{2}+2a=a^{2}-4a+4-\left(a+2\right)^{2}+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-2\right)^{2}.
-a^{2}+2a=a^{2}-4a+4-\left(a^{2}+4a+4\right)+a^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
-a^{2}+2a=a^{2}-4a+4-a^{2}-4a-4+a^{2}
To find the opposite of a^{2}+4a+4, find the opposite of each term.
-a^{2}+2a=-4a+4-4a-4+a^{2}
Combine a^{2} and -a^{2} to get 0.
-a^{2}+2a=-8a+4-4+a^{2}
Combine -4a and -4a to get -8a.
-a^{2}+2a=-8a+a^{2}
Subtract 4 from 4 to get 0.
-a^{2}+2a+8a=a^{2}
Add 8a to both sides.
-a^{2}+10a=a^{2}
Combine 2a and 8a to get 10a.
-a^{2}+10a-a^{2}=0
Subtract a^{2} from both sides.
-2a^{2}+10a=0
Combine -a^{2} and -a^{2} to get -2a^{2}.
a\left(-2a+10\right)=0
Factor out a.
a=0 a=5
To find equation solutions, solve a=0 and -2a+10=0.
a=5
Variable a cannot be equal to 0.
-a\left(a-2\right)=\left(a-2\right)^{2}-\left(a+2\right)^{2}+a^{2}
Variable a cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by 2a\left(a-2\right), the least common multiple of 2,2\left(a-2\right)a.
-a^{2}+2a=\left(a-2\right)^{2}-\left(a+2\right)^{2}+a^{2}
Use the distributive property to multiply -a by a-2.
-a^{2}+2a=a^{2}-4a+4-\left(a+2\right)^{2}+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-2\right)^{2}.
-a^{2}+2a=a^{2}-4a+4-\left(a^{2}+4a+4\right)+a^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
-a^{2}+2a=a^{2}-4a+4-a^{2}-4a-4+a^{2}
To find the opposite of a^{2}+4a+4, find the opposite of each term.
-a^{2}+2a=-4a+4-4a-4+a^{2}
Combine a^{2} and -a^{2} to get 0.
-a^{2}+2a=-8a+4-4+a^{2}
Combine -4a and -4a to get -8a.
-a^{2}+2a=-8a+a^{2}
Subtract 4 from 4 to get 0.
-a^{2}+2a+8a=a^{2}
Add 8a to both sides.
-a^{2}+10a=a^{2}
Combine 2a and 8a to get 10a.
-a^{2}+10a-a^{2}=0
Subtract a^{2} from both sides.
-2a^{2}+10a=0
Combine -a^{2} and -a^{2} to get -2a^{2}.
a=\frac{-10±\sqrt{10^{2}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 10 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-10±10}{2\left(-2\right)}
Take the square root of 10^{2}.
a=\frac{-10±10}{-4}
Multiply 2 times -2.
a=\frac{0}{-4}
Now solve the equation a=\frac{-10±10}{-4} when ± is plus. Add -10 to 10.
a=0
Divide 0 by -4.
a=-\frac{20}{-4}
Now solve the equation a=\frac{-10±10}{-4} when ± is minus. Subtract 10 from -10.
a=5
Divide -20 by -4.
a=0 a=5
The equation is now solved.
a=5
Variable a cannot be equal to 0.
-a\left(a-2\right)=\left(a-2\right)^{2}-\left(a+2\right)^{2}+a^{2}
Variable a cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by 2a\left(a-2\right), the least common multiple of 2,2\left(a-2\right)a.
-a^{2}+2a=\left(a-2\right)^{2}-\left(a+2\right)^{2}+a^{2}
Use the distributive property to multiply -a by a-2.
-a^{2}+2a=a^{2}-4a+4-\left(a+2\right)^{2}+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-2\right)^{2}.
-a^{2}+2a=a^{2}-4a+4-\left(a^{2}+4a+4\right)+a^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
-a^{2}+2a=a^{2}-4a+4-a^{2}-4a-4+a^{2}
To find the opposite of a^{2}+4a+4, find the opposite of each term.
-a^{2}+2a=-4a+4-4a-4+a^{2}
Combine a^{2} and -a^{2} to get 0.
-a^{2}+2a=-8a+4-4+a^{2}
Combine -4a and -4a to get -8a.
-a^{2}+2a=-8a+a^{2}
Subtract 4 from 4 to get 0.
-a^{2}+2a+8a=a^{2}
Add 8a to both sides.
-a^{2}+10a=a^{2}
Combine 2a and 8a to get 10a.
-a^{2}+10a-a^{2}=0
Subtract a^{2} from both sides.
-2a^{2}+10a=0
Combine -a^{2} and -a^{2} to get -2a^{2}.
\frac{-2a^{2}+10a}{-2}=\frac{0}{-2}
Divide both sides by -2.
a^{2}+\frac{10}{-2}a=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
a^{2}-5a=\frac{0}{-2}
Divide 10 by -2.
a^{2}-5a=0
Divide 0 by -2.
a^{2}-5a+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-5a+\frac{25}{4}=\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
\left(a-\frac{5}{2}\right)^{2}=\frac{25}{4}
Factor a^{2}-5a+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
a-\frac{5}{2}=\frac{5}{2} a-\frac{5}{2}=-\frac{5}{2}
Simplify.
a=5 a=0
Add \frac{5}{2} to both sides of the equation.
a=5
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}