Solve for x
x=-8
x=-4
Graph
Share
Copied to clipboard
-x^{2}-12x+16=48
Multiply both sides of the equation by 4.
-x^{2}-12x+16-48=0
Subtract 48 from both sides.
-x^{2}-12x-32=0
Subtract 48 from 16 to get -32.
a+b=-12 ab=-\left(-32\right)=32
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-32. To find a and b, set up a system to be solved.
-1,-32 -2,-16 -4,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 32.
-1-32=-33 -2-16=-18 -4-8=-12
Calculate the sum for each pair.
a=-4 b=-8
The solution is the pair that gives sum -12.
\left(-x^{2}-4x\right)+\left(-8x-32\right)
Rewrite -x^{2}-12x-32 as \left(-x^{2}-4x\right)+\left(-8x-32\right).
x\left(-x-4\right)+8\left(-x-4\right)
Factor out x in the first and 8 in the second group.
\left(-x-4\right)\left(x+8\right)
Factor out common term -x-4 by using distributive property.
x=-4 x=-8
To find equation solutions, solve -x-4=0 and x+8=0.
-x^{2}-12x+16=48
Multiply both sides of the equation by 4.
-x^{2}-12x+16-48=0
Subtract 48 from both sides.
-x^{2}-12x-32=0
Subtract 48 from 16 to get -32.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-1\right)\left(-32\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -12 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-1\right)\left(-32\right)}}{2\left(-1\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+4\left(-32\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2\left(-1\right)}
Multiply 4 times -32.
x=\frac{-\left(-12\right)±\sqrt{16}}{2\left(-1\right)}
Add 144 to -128.
x=\frac{-\left(-12\right)±4}{2\left(-1\right)}
Take the square root of 16.
x=\frac{12±4}{2\left(-1\right)}
The opposite of -12 is 12.
x=\frac{12±4}{-2}
Multiply 2 times -1.
x=\frac{16}{-2}
Now solve the equation x=\frac{12±4}{-2} when ± is plus. Add 12 to 4.
x=-8
Divide 16 by -2.
x=\frac{8}{-2}
Now solve the equation x=\frac{12±4}{-2} when ± is minus. Subtract 4 from 12.
x=-4
Divide 8 by -2.
x=-8 x=-4
The equation is now solved.
-x^{2}-12x+16=48
Multiply both sides of the equation by 4.
-x^{2}-12x=48-16
Subtract 16 from both sides.
-x^{2}-12x=32
Subtract 16 from 48 to get 32.
\frac{-x^{2}-12x}{-1}=\frac{32}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{12}{-1}\right)x=\frac{32}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+12x=\frac{32}{-1}
Divide -12 by -1.
x^{2}+12x=-32
Divide 32 by -1.
x^{2}+12x+6^{2}=-32+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=-32+36
Square 6.
x^{2}+12x+36=4
Add -32 to 36.
\left(x+6\right)^{2}=4
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+6=2 x+6=-2
Simplify.
x=-4 x=-8
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}