Solve for n
n=-0.8
Share
Copied to clipboard
-\frac{n}{1.6}=8.4-7.9
Subtract 7.9 from both sides.
-\frac{n}{1.6}=0.5
Subtract 7.9 from 8.4 to get 0.5.
\frac{n}{1.6}=\frac{0.5}{-1}
Divide both sides by -1.
\frac{n}{1.6}=\frac{5}{-10}
Expand \frac{0.5}{-1} by multiplying both numerator and the denominator by 10.
\frac{n}{1.6}=-\frac{1}{2}
Reduce the fraction \frac{5}{-10} to lowest terms by extracting and canceling out 5.
n=-\frac{1}{2}\times 1.6
Multiply both sides by 1.6.
n=-\frac{1}{2}\times \frac{8}{5}
Convert decimal number 1.6 to fraction \frac{16}{10}. Reduce the fraction \frac{16}{10} to lowest terms by extracting and canceling out 2.
n=\frac{-8}{2\times 5}
Multiply -\frac{1}{2} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
n=\frac{-8}{10}
Do the multiplications in the fraction \frac{-8}{2\times 5}.
n=-\frac{4}{5}
Reduce the fraction \frac{-8}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}