Evaluate
-\frac{a-1}{a+1}
Expand
-\frac{a-1}{a+1}
Share
Copied to clipboard
\frac{-\frac{\left(a-5\right)\left(a+5\right)}{\left(a+5\right)^{2}}}{\frac{a^{2}-1}{a+5}}\times \frac{a^{2}-2a+1}{a-5}
Factor the expressions that are not already factored in \frac{a^{2}-25}{a^{2}+10a+25}.
\frac{-\frac{a-5}{a+5}}{\frac{a^{2}-1}{a+5}}\times \frac{a^{2}-2a+1}{a-5}
Cancel out a+5 in both numerator and denominator.
\frac{\left(-\frac{a-5}{a+5}\right)\left(a+5\right)}{a^{2}-1}\times \frac{a^{2}-2a+1}{a-5}
Divide -\frac{a-5}{a+5} by \frac{a^{2}-1}{a+5} by multiplying -\frac{a-5}{a+5} by the reciprocal of \frac{a^{2}-1}{a+5}.
\frac{-\left(a-5\right)}{a^{2}-1}\times \frac{a^{2}-2a+1}{a-5}
Cancel out a+5 and a+5.
\frac{-\left(a-5\right)\left(a^{2}-2a+1\right)}{\left(a^{2}-1\right)\left(a-5\right)}
Multiply \frac{-\left(a-5\right)}{a^{2}-1} times \frac{a^{2}-2a+1}{a-5} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a^{2}-2a+1\right)}{a^{2}-1}
Cancel out a-5 in both numerator and denominator.
\frac{-\left(a-1\right)^{2}}{\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)}{a+1}
Cancel out a-1 in both numerator and denominator.
\frac{-a+1}{a+1}
Expand the expression.
\frac{-\frac{\left(a-5\right)\left(a+5\right)}{\left(a+5\right)^{2}}}{\frac{a^{2}-1}{a+5}}\times \frac{a^{2}-2a+1}{a-5}
Factor the expressions that are not already factored in \frac{a^{2}-25}{a^{2}+10a+25}.
\frac{-\frac{a-5}{a+5}}{\frac{a^{2}-1}{a+5}}\times \frac{a^{2}-2a+1}{a-5}
Cancel out a+5 in both numerator and denominator.
\frac{\left(-\frac{a-5}{a+5}\right)\left(a+5\right)}{a^{2}-1}\times \frac{a^{2}-2a+1}{a-5}
Divide -\frac{a-5}{a+5} by \frac{a^{2}-1}{a+5} by multiplying -\frac{a-5}{a+5} by the reciprocal of \frac{a^{2}-1}{a+5}.
\frac{-\left(a-5\right)}{a^{2}-1}\times \frac{a^{2}-2a+1}{a-5}
Cancel out a+5 and a+5.
\frac{-\left(a-5\right)\left(a^{2}-2a+1\right)}{\left(a^{2}-1\right)\left(a-5\right)}
Multiply \frac{-\left(a-5\right)}{a^{2}-1} times \frac{a^{2}-2a+1}{a-5} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a^{2}-2a+1\right)}{a^{2}-1}
Cancel out a-5 in both numerator and denominator.
\frac{-\left(a-1\right)^{2}}{\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)}{a+1}
Cancel out a-1 in both numerator and denominator.
\frac{-a+1}{a+1}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}