Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{-\frac{\left(a-5\right)\left(a+5\right)}{\left(a+5\right)^{2}}}{\frac{a^{2}-1}{a+5}}\times \frac{a^{2}-2a+1}{a-5}
Factor the expressions that are not already factored in \frac{a^{2}-25}{a^{2}+10a+25}.
\frac{-\frac{a-5}{a+5}}{\frac{a^{2}-1}{a+5}}\times \frac{a^{2}-2a+1}{a-5}
Cancel out a+5 in both numerator and denominator.
\frac{\left(-\frac{a-5}{a+5}\right)\left(a+5\right)}{a^{2}-1}\times \frac{a^{2}-2a+1}{a-5}
Divide -\frac{a-5}{a+5} by \frac{a^{2}-1}{a+5} by multiplying -\frac{a-5}{a+5} by the reciprocal of \frac{a^{2}-1}{a+5}.
\frac{-\left(a-5\right)}{a^{2}-1}\times \frac{a^{2}-2a+1}{a-5}
Cancel out a+5 and a+5.
\frac{-\left(a-5\right)\left(a^{2}-2a+1\right)}{\left(a^{2}-1\right)\left(a-5\right)}
Multiply \frac{-\left(a-5\right)}{a^{2}-1} times \frac{a^{2}-2a+1}{a-5} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a^{2}-2a+1\right)}{a^{2}-1}
Cancel out a-5 in both numerator and denominator.
\frac{-\left(a-1\right)^{2}}{\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)}{a+1}
Cancel out a-1 in both numerator and denominator.
\frac{-a+1}{a+1}
Expand the expression.
\frac{-\frac{\left(a-5\right)\left(a+5\right)}{\left(a+5\right)^{2}}}{\frac{a^{2}-1}{a+5}}\times \frac{a^{2}-2a+1}{a-5}
Factor the expressions that are not already factored in \frac{a^{2}-25}{a^{2}+10a+25}.
\frac{-\frac{a-5}{a+5}}{\frac{a^{2}-1}{a+5}}\times \frac{a^{2}-2a+1}{a-5}
Cancel out a+5 in both numerator and denominator.
\frac{\left(-\frac{a-5}{a+5}\right)\left(a+5\right)}{a^{2}-1}\times \frac{a^{2}-2a+1}{a-5}
Divide -\frac{a-5}{a+5} by \frac{a^{2}-1}{a+5} by multiplying -\frac{a-5}{a+5} by the reciprocal of \frac{a^{2}-1}{a+5}.
\frac{-\left(a-5\right)}{a^{2}-1}\times \frac{a^{2}-2a+1}{a-5}
Cancel out a+5 and a+5.
\frac{-\left(a-5\right)\left(a^{2}-2a+1\right)}{\left(a^{2}-1\right)\left(a-5\right)}
Multiply \frac{-\left(a-5\right)}{a^{2}-1} times \frac{a^{2}-2a+1}{a-5} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a^{2}-2a+1\right)}{a^{2}-1}
Cancel out a-5 in both numerator and denominator.
\frac{-\left(a-1\right)^{2}}{\left(a-1\right)\left(a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)}{a+1}
Cancel out a-1 in both numerator and denominator.
\frac{-a+1}{a+1}
Expand the expression.