Evaluate
\frac{10}{9}\approx 1.111111111
Factor
\frac{2 \cdot 5}{3 ^ {2}} = 1\frac{1}{9} = 1.1111111111111112
Share
Copied to clipboard
-\frac{7-\frac{-6}{2}}{-3\times 3}
Subtract 10 from 4 to get -6.
-\frac{7-\left(-3\right)}{-3\times 3}
Divide -6 by 2 to get -3.
-\frac{7+3}{-3\times 3}
The opposite of -3 is 3.
-\frac{10}{-3\times 3}
Add 7 and 3 to get 10.
-\frac{10}{-9}
Multiply -3 and 3 to get -9.
-\left(-\frac{10}{9}\right)
Fraction \frac{10}{-9} can be rewritten as -\frac{10}{9} by extracting the negative sign.
\frac{10}{9}
The opposite of -\frac{10}{9} is \frac{10}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}