Solve for w
w=-\frac{24}{47}\approx -0.510638298
Share
Copied to clipboard
-\frac{7}{3}w-2-\frac{4}{5}w=-\frac{2}{5}
Subtract \frac{4}{5}w from both sides.
-\frac{47}{15}w-2=-\frac{2}{5}
Combine -\frac{7}{3}w and -\frac{4}{5}w to get -\frac{47}{15}w.
-\frac{47}{15}w=-\frac{2}{5}+2
Add 2 to both sides.
-\frac{47}{15}w=-\frac{2}{5}+\frac{10}{5}
Convert 2 to fraction \frac{10}{5}.
-\frac{47}{15}w=\frac{-2+10}{5}
Since -\frac{2}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
-\frac{47}{15}w=\frac{8}{5}
Add -2 and 10 to get 8.
w=\frac{8}{5}\left(-\frac{15}{47}\right)
Multiply both sides by -\frac{15}{47}, the reciprocal of -\frac{47}{15}.
w=\frac{8\left(-15\right)}{5\times 47}
Multiply \frac{8}{5} times -\frac{15}{47} by multiplying numerator times numerator and denominator times denominator.
w=\frac{-120}{235}
Do the multiplications in the fraction \frac{8\left(-15\right)}{5\times 47}.
w=-\frac{24}{47}
Reduce the fraction \frac{-120}{235} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}