Solve for v
v = -\frac{8}{5} = -1\frac{3}{5} = -1.6
Share
Copied to clipboard
-\frac{7}{2}v-\frac{5}{3}-\frac{2}{3}v=5
Subtract \frac{2}{3}v from both sides.
-\frac{25}{6}v-\frac{5}{3}=5
Combine -\frac{7}{2}v and -\frac{2}{3}v to get -\frac{25}{6}v.
-\frac{25}{6}v=5+\frac{5}{3}
Add \frac{5}{3} to both sides.
-\frac{25}{6}v=\frac{15}{3}+\frac{5}{3}
Convert 5 to fraction \frac{15}{3}.
-\frac{25}{6}v=\frac{15+5}{3}
Since \frac{15}{3} and \frac{5}{3} have the same denominator, add them by adding their numerators.
-\frac{25}{6}v=\frac{20}{3}
Add 15 and 5 to get 20.
v=\frac{20}{3}\left(-\frac{6}{25}\right)
Multiply both sides by -\frac{6}{25}, the reciprocal of -\frac{25}{6}.
v=\frac{20\left(-6\right)}{3\times 25}
Multiply \frac{20}{3} times -\frac{6}{25} by multiplying numerator times numerator and denominator times denominator.
v=\frac{-120}{75}
Do the multiplications in the fraction \frac{20\left(-6\right)}{3\times 25}.
v=-\frac{8}{5}
Reduce the fraction \frac{-120}{75} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}