Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

-\frac{57}{7}\left(-\frac{1}{8}\right)\left(-2^{4}\right)+\frac{\left(-\frac{3}{4}\right)^{2}}{3}
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\frac{-57\left(-1\right)}{7\times 8}\left(-2^{4}\right)+\frac{\left(-\frac{3}{4}\right)^{2}}{3}
Multiply -\frac{57}{7} times -\frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{57}{56}\left(-2^{4}\right)+\frac{\left(-\frac{3}{4}\right)^{2}}{3}
Do the multiplications in the fraction \frac{-57\left(-1\right)}{7\times 8}.
\frac{57}{56}\left(-16\right)+\frac{\left(-\frac{3}{4}\right)^{2}}{3}
Calculate 2 to the power of 4 and get 16.
\frac{57\left(-16\right)}{56}+\frac{\left(-\frac{3}{4}\right)^{2}}{3}
Express \frac{57}{56}\left(-16\right) as a single fraction.
\frac{-912}{56}+\frac{\left(-\frac{3}{4}\right)^{2}}{3}
Multiply 57 and -16 to get -912.
-\frac{114}{7}+\frac{\left(-\frac{3}{4}\right)^{2}}{3}
Reduce the fraction \frac{-912}{56} to lowest terms by extracting and canceling out 8.
-\frac{114}{7}+\frac{\frac{9}{16}}{3}
Calculate -\frac{3}{4} to the power of 2 and get \frac{9}{16}.
-\frac{114}{7}+\frac{9}{16\times 3}
Express \frac{\frac{9}{16}}{3} as a single fraction.
-\frac{114}{7}+\frac{9}{48}
Multiply 16 and 3 to get 48.
-\frac{114}{7}+\frac{3}{16}
Reduce the fraction \frac{9}{48} to lowest terms by extracting and canceling out 3.
-\frac{1824}{112}+\frac{21}{112}
Least common multiple of 7 and 16 is 112. Convert -\frac{114}{7} and \frac{3}{16} to fractions with denominator 112.
\frac{-1824+21}{112}
Since -\frac{1824}{112} and \frac{21}{112} have the same denominator, add them by adding their numerators.
-\frac{1803}{112}
Add -1824 and 21 to get -1803.