Solve for x
x=3
Graph
Share
Copied to clipboard
-\frac{5}{3}x+2-\left(5-3\right)=-\sqrt{x+22}
Subtract 5-3 from both sides of the equation.
-\frac{5}{3}x+2-2=-\sqrt{x+22}
Subtract 3 from 5 to get 2.
-\frac{5}{3}x=-\sqrt{x+22}
Subtract 2 from 2 to get 0.
\left(-\frac{5}{3}x\right)^{2}=\left(-\sqrt{x+22}\right)^{2}
Square both sides of the equation.
\left(-\frac{5}{3}\right)^{2}x^{2}=\left(-\sqrt{x+22}\right)^{2}
Expand \left(-\frac{5}{3}x\right)^{2}.
\frac{25}{9}x^{2}=\left(-\sqrt{x+22}\right)^{2}
Calculate -\frac{5}{3} to the power of 2 and get \frac{25}{9}.
\frac{25}{9}x^{2}=\left(-1\right)^{2}\left(\sqrt{x+22}\right)^{2}
Expand \left(-\sqrt{x+22}\right)^{2}.
\frac{25}{9}x^{2}=1\left(\sqrt{x+22}\right)^{2}
Calculate -1 to the power of 2 and get 1.
\frac{25}{9}x^{2}=1\left(x+22\right)
Calculate \sqrt{x+22} to the power of 2 and get x+22.
\frac{25}{9}x^{2}=x+22
Use the distributive property to multiply 1 by x+22.
\frac{25}{9}x^{2}-x=22
Subtract x from both sides.
\frac{25}{9}x^{2}-x-22=0
Subtract 22 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{25}{9}\left(-22\right)}}{2\times \frac{25}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{25}{9} for a, -1 for b, and -22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-\frac{100}{9}\left(-22\right)}}{2\times \frac{25}{9}}
Multiply -4 times \frac{25}{9}.
x=\frac{-\left(-1\right)±\sqrt{1+\frac{2200}{9}}}{2\times \frac{25}{9}}
Multiply -\frac{100}{9} times -22.
x=\frac{-\left(-1\right)±\sqrt{\frac{2209}{9}}}{2\times \frac{25}{9}}
Add 1 to \frac{2200}{9}.
x=\frac{-\left(-1\right)±\frac{47}{3}}{2\times \frac{25}{9}}
Take the square root of \frac{2209}{9}.
x=\frac{1±\frac{47}{3}}{2\times \frac{25}{9}}
The opposite of -1 is 1.
x=\frac{1±\frac{47}{3}}{\frac{50}{9}}
Multiply 2 times \frac{25}{9}.
x=\frac{\frac{50}{3}}{\frac{50}{9}}
Now solve the equation x=\frac{1±\frac{47}{3}}{\frac{50}{9}} when ± is plus. Add 1 to \frac{47}{3}.
x=3
Divide \frac{50}{3} by \frac{50}{9} by multiplying \frac{50}{3} by the reciprocal of \frac{50}{9}.
x=-\frac{\frac{44}{3}}{\frac{50}{9}}
Now solve the equation x=\frac{1±\frac{47}{3}}{\frac{50}{9}} when ± is minus. Subtract \frac{47}{3} from 1.
x=-\frac{66}{25}
Divide -\frac{44}{3} by \frac{50}{9} by multiplying -\frac{44}{3} by the reciprocal of \frac{50}{9}.
x=3 x=-\frac{66}{25}
The equation is now solved.
-\frac{5}{3}\times 3+2=5-\sqrt{3+22}-3
Substitute 3 for x in the equation -\frac{5}{3}x+2=5-\sqrt{x+22}-3.
-3=-3
Simplify. The value x=3 satisfies the equation.
-\frac{5}{3}\left(-\frac{66}{25}\right)+2=5-\sqrt{-\frac{66}{25}+22}-3
Substitute -\frac{66}{25} for x in the equation -\frac{5}{3}x+2=5-\sqrt{x+22}-3.
\frac{32}{5}=-\frac{12}{5}
Simplify. The value x=-\frac{66}{25} does not satisfy the equation because the left and the right hand side have opposite signs.
x=3
Equation -\frac{5x}{3}=-\sqrt{x+22} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}