Evaluate
\frac{21j}{2}-\frac{37}{5}i
Expand
\frac{21j}{2}-\frac{37}{5}i
Share
Copied to clipboard
-\frac{5}{2}\times \left(2i\right)-\frac{5}{2}\left(-3\right)j+\frac{3}{5}\left(-4i+5j\right)
Use the distributive property to multiply -\frac{5}{2} by 2i-3j.
-5i-\frac{5}{2}\left(-3\right)j+\frac{3}{5}\left(-4i+5j\right)
Multiply -\frac{5}{2} and 2i to get -5i.
-5i+\frac{-5\left(-3\right)}{2}j+\frac{3}{5}\left(-4i+5j\right)
Express -\frac{5}{2}\left(-3\right) as a single fraction.
-5i+\frac{15}{2}j+\frac{3}{5}\left(-4i+5j\right)
Multiply -5 and -3 to get 15.
-5i+\frac{15}{2}j+\frac{3}{5}\times \left(-4i\right)+\frac{3}{5}\times 5j
Use the distributive property to multiply \frac{3}{5} by -4i+5j.
-5i+\frac{15}{2}j-\frac{12}{5}i+\frac{3}{5}\times 5j
Multiply \frac{3}{5} and -4i to get -\frac{12}{5}i.
-5i+\frac{15}{2}j-\frac{12}{5}i+3j
Cancel out 5 and 5.
-\frac{37}{5}i+\frac{15}{2}j+3j
Subtract \frac{12}{5}i from -5i to get -\frac{37}{5}i.
-\frac{37}{5}i+\frac{21}{2}j
Combine \frac{15}{2}j and 3j to get \frac{21}{2}j.
-\frac{5}{2}\times \left(2i\right)-\frac{5}{2}\left(-3\right)j+\frac{3}{5}\left(-4i+5j\right)
Use the distributive property to multiply -\frac{5}{2} by 2i-3j.
-5i-\frac{5}{2}\left(-3\right)j+\frac{3}{5}\left(-4i+5j\right)
Multiply -\frac{5}{2} and 2i to get -5i.
-5i+\frac{-5\left(-3\right)}{2}j+\frac{3}{5}\left(-4i+5j\right)
Express -\frac{5}{2}\left(-3\right) as a single fraction.
-5i+\frac{15}{2}j+\frac{3}{5}\left(-4i+5j\right)
Multiply -5 and -3 to get 15.
-5i+\frac{15}{2}j+\frac{3}{5}\times \left(-4i\right)+\frac{3}{5}\times 5j
Use the distributive property to multiply \frac{3}{5} by -4i+5j.
-5i+\frac{15}{2}j-\frac{12}{5}i+\frac{3}{5}\times 5j
Multiply \frac{3}{5} and -4i to get -\frac{12}{5}i.
-5i+\frac{15}{2}j-\frac{12}{5}i+3j
Cancel out 5 and 5.
-\frac{37}{5}i+\frac{15}{2}j+3j
Subtract \frac{12}{5}i from -5i to get -\frac{37}{5}i.
-\frac{37}{5}i+\frac{21}{2}j
Combine \frac{15}{2}j and 3j to get \frac{21}{2}j.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}