Solve for y
y=\sqrt{14}+2\approx 5.741657387
y=2-\sqrt{14}\approx -1.741657387
Graph
Share
Copied to clipboard
-5+\frac{1}{2}y^{2}-2y=0
Subtract \frac{5}{2} from -\frac{5}{2} to get -5.
\frac{1}{2}y^{2}-2y-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}\left(-5\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -2 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}\left(-5\right)}}{2\times \frac{1}{2}}
Square -2.
y=\frac{-\left(-2\right)±\sqrt{4-2\left(-5\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
y=\frac{-\left(-2\right)±\sqrt{4+10}}{2\times \frac{1}{2}}
Multiply -2 times -5.
y=\frac{-\left(-2\right)±\sqrt{14}}{2\times \frac{1}{2}}
Add 4 to 10.
y=\frac{2±\sqrt{14}}{2\times \frac{1}{2}}
The opposite of -2 is 2.
y=\frac{2±\sqrt{14}}{1}
Multiply 2 times \frac{1}{2}.
y=\frac{\sqrt{14}+2}{1}
Now solve the equation y=\frac{2±\sqrt{14}}{1} when ± is plus. Add 2 to \sqrt{14}.
y=\sqrt{14}+2
Divide 2+\sqrt{14} by 1.
y=\frac{2-\sqrt{14}}{1}
Now solve the equation y=\frac{2±\sqrt{14}}{1} when ± is minus. Subtract \sqrt{14} from 2.
y=2-\sqrt{14}
Divide 2-\sqrt{14} by 1.
y=\sqrt{14}+2 y=2-\sqrt{14}
The equation is now solved.
-5+\frac{1}{2}y^{2}-2y=0
Subtract \frac{5}{2} from -\frac{5}{2} to get -5.
\frac{1}{2}y^{2}-2y=5
Add 5 to both sides. Anything plus zero gives itself.
\frac{\frac{1}{2}y^{2}-2y}{\frac{1}{2}}=\frac{5}{\frac{1}{2}}
Multiply both sides by 2.
y^{2}+\left(-\frac{2}{\frac{1}{2}}\right)y=\frac{5}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
y^{2}-4y=\frac{5}{\frac{1}{2}}
Divide -2 by \frac{1}{2} by multiplying -2 by the reciprocal of \frac{1}{2}.
y^{2}-4y=10
Divide 5 by \frac{1}{2} by multiplying 5 by the reciprocal of \frac{1}{2}.
y^{2}-4y+\left(-2\right)^{2}=10+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-4y+4=10+4
Square -2.
y^{2}-4y+4=14
Add 10 to 4.
\left(y-2\right)^{2}=14
Factor y^{2}-4y+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-2\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
y-2=\sqrt{14} y-2=-\sqrt{14}
Simplify.
y=\sqrt{14}+2 y=2-\sqrt{14}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}