Solve for x
x = -\frac{769}{120} = -6\frac{49}{120} \approx -6.408333333
Graph
Share
Copied to clipboard
x+\frac{36}{5}=-\frac{38}{5}\left(-\frac{5}{48}\right)
Multiply both sides by -\frac{5}{48}, the reciprocal of -\frac{48}{5}.
x+\frac{36}{5}=\frac{-38\left(-5\right)}{5\times 48}
Multiply -\frac{38}{5} times -\frac{5}{48} by multiplying numerator times numerator and denominator times denominator.
x+\frac{36}{5}=\frac{190}{240}
Do the multiplications in the fraction \frac{-38\left(-5\right)}{5\times 48}.
x+\frac{36}{5}=\frac{19}{24}
Reduce the fraction \frac{190}{240} to lowest terms by extracting and canceling out 10.
x=\frac{19}{24}-\frac{36}{5}
Subtract \frac{36}{5} from both sides.
x=\frac{95}{120}-\frac{864}{120}
Least common multiple of 24 and 5 is 120. Convert \frac{19}{24} and \frac{36}{5} to fractions with denominator 120.
x=\frac{95-864}{120}
Since \frac{95}{120} and \frac{864}{120} have the same denominator, subtract them by subtracting their numerators.
x=-\frac{769}{120}
Subtract 864 from 95 to get -769.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}