Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-\left(a-7\right)\times 4a=\left(a+2\right)\times 8
Variable a cannot be equal to any of the values -2,7 since division by zero is not defined. Multiply both sides of the equation by \left(a-7\right)\left(a+2\right), the least common multiple of a+2,a-7.
-\left(4a-28\right)a=\left(a+2\right)\times 8
Use the distributive property to multiply a-7 by 4.
-\left(4a^{2}-28a\right)=\left(a+2\right)\times 8
Use the distributive property to multiply 4a-28 by a.
-4a^{2}+28a=\left(a+2\right)\times 8
To find the opposite of 4a^{2}-28a, find the opposite of each term.
-4a^{2}+28a=8a+16
Use the distributive property to multiply a+2 by 8.
-4a^{2}+28a-8a=16
Subtract 8a from both sides.
-4a^{2}+20a=16
Combine 28a and -8a to get 20a.
-4a^{2}+20a-16=0
Subtract 16 from both sides.
a=\frac{-20±\sqrt{20^{2}-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 20 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-20±\sqrt{400-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
Square 20.
a=\frac{-20±\sqrt{400+16\left(-16\right)}}{2\left(-4\right)}
Multiply -4 times -4.
a=\frac{-20±\sqrt{400-256}}{2\left(-4\right)}
Multiply 16 times -16.
a=\frac{-20±\sqrt{144}}{2\left(-4\right)}
Add 400 to -256.
a=\frac{-20±12}{2\left(-4\right)}
Take the square root of 144.
a=\frac{-20±12}{-8}
Multiply 2 times -4.
a=-\frac{8}{-8}
Now solve the equation a=\frac{-20±12}{-8} when ± is plus. Add -20 to 12.
a=1
Divide -8 by -8.
a=-\frac{32}{-8}
Now solve the equation a=\frac{-20±12}{-8} when ± is minus. Subtract 12 from -20.
a=4
Divide -32 by -8.
a=1 a=4
The equation is now solved.
-\left(a-7\right)\times 4a=\left(a+2\right)\times 8
Variable a cannot be equal to any of the values -2,7 since division by zero is not defined. Multiply both sides of the equation by \left(a-7\right)\left(a+2\right), the least common multiple of a+2,a-7.
-\left(4a-28\right)a=\left(a+2\right)\times 8
Use the distributive property to multiply a-7 by 4.
-\left(4a^{2}-28a\right)=\left(a+2\right)\times 8
Use the distributive property to multiply 4a-28 by a.
-4a^{2}+28a=\left(a+2\right)\times 8
To find the opposite of 4a^{2}-28a, find the opposite of each term.
-4a^{2}+28a=8a+16
Use the distributive property to multiply a+2 by 8.
-4a^{2}+28a-8a=16
Subtract 8a from both sides.
-4a^{2}+20a=16
Combine 28a and -8a to get 20a.
\frac{-4a^{2}+20a}{-4}=\frac{16}{-4}
Divide both sides by -4.
a^{2}+\frac{20}{-4}a=\frac{16}{-4}
Dividing by -4 undoes the multiplication by -4.
a^{2}-5a=\frac{16}{-4}
Divide 20 by -4.
a^{2}-5a=-4
Divide 16 by -4.
a^{2}-5a+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-5a+\frac{25}{4}=-4+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-5a+\frac{25}{4}=\frac{9}{4}
Add -4 to \frac{25}{4}.
\left(a-\frac{5}{2}\right)^{2}=\frac{9}{4}
Factor a^{2}-5a+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
a-\frac{5}{2}=\frac{3}{2} a-\frac{5}{2}=-\frac{3}{2}
Simplify.
a=4 a=1
Add \frac{5}{2} to both sides of the equation.