Solve for a
a=1
a=4
Share
Copied to clipboard
-\left(a-7\right)\times 4a=\left(a+2\right)\times 8
Variable a cannot be equal to any of the values -2,7 since division by zero is not defined. Multiply both sides of the equation by \left(a-7\right)\left(a+2\right), the least common multiple of a+2,a-7.
-\left(4a-28\right)a=\left(a+2\right)\times 8
Use the distributive property to multiply a-7 by 4.
-\left(4a^{2}-28a\right)=\left(a+2\right)\times 8
Use the distributive property to multiply 4a-28 by a.
-4a^{2}+28a=\left(a+2\right)\times 8
To find the opposite of 4a^{2}-28a, find the opposite of each term.
-4a^{2}+28a=8a+16
Use the distributive property to multiply a+2 by 8.
-4a^{2}+28a-8a=16
Subtract 8a from both sides.
-4a^{2}+20a=16
Combine 28a and -8a to get 20a.
-4a^{2}+20a-16=0
Subtract 16 from both sides.
a=\frac{-20±\sqrt{20^{2}-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 20 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-20±\sqrt{400-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
Square 20.
a=\frac{-20±\sqrt{400+16\left(-16\right)}}{2\left(-4\right)}
Multiply -4 times -4.
a=\frac{-20±\sqrt{400-256}}{2\left(-4\right)}
Multiply 16 times -16.
a=\frac{-20±\sqrt{144}}{2\left(-4\right)}
Add 400 to -256.
a=\frac{-20±12}{2\left(-4\right)}
Take the square root of 144.
a=\frac{-20±12}{-8}
Multiply 2 times -4.
a=-\frac{8}{-8}
Now solve the equation a=\frac{-20±12}{-8} when ± is plus. Add -20 to 12.
a=1
Divide -8 by -8.
a=-\frac{32}{-8}
Now solve the equation a=\frac{-20±12}{-8} when ± is minus. Subtract 12 from -20.
a=4
Divide -32 by -8.
a=1 a=4
The equation is now solved.
-\left(a-7\right)\times 4a=\left(a+2\right)\times 8
Variable a cannot be equal to any of the values -2,7 since division by zero is not defined. Multiply both sides of the equation by \left(a-7\right)\left(a+2\right), the least common multiple of a+2,a-7.
-\left(4a-28\right)a=\left(a+2\right)\times 8
Use the distributive property to multiply a-7 by 4.
-\left(4a^{2}-28a\right)=\left(a+2\right)\times 8
Use the distributive property to multiply 4a-28 by a.
-4a^{2}+28a=\left(a+2\right)\times 8
To find the opposite of 4a^{2}-28a, find the opposite of each term.
-4a^{2}+28a=8a+16
Use the distributive property to multiply a+2 by 8.
-4a^{2}+28a-8a=16
Subtract 8a from both sides.
-4a^{2}+20a=16
Combine 28a and -8a to get 20a.
\frac{-4a^{2}+20a}{-4}=\frac{16}{-4}
Divide both sides by -4.
a^{2}+\frac{20}{-4}a=\frac{16}{-4}
Dividing by -4 undoes the multiplication by -4.
a^{2}-5a=\frac{16}{-4}
Divide 20 by -4.
a^{2}-5a=-4
Divide 16 by -4.
a^{2}-5a+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-5a+\frac{25}{4}=-4+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-5a+\frac{25}{4}=\frac{9}{4}
Add -4 to \frac{25}{4}.
\left(a-\frac{5}{2}\right)^{2}=\frac{9}{4}
Factor a^{2}-5a+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
a-\frac{5}{2}=\frac{3}{2} a-\frac{5}{2}=-\frac{3}{2}
Simplify.
a=4 a=1
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}