Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

-\frac{4\left(7+6i\right)}{\left(7-6i\right)\left(7+6i\right)}
Multiply both numerator and denominator of \frac{4}{7-6i} by the complex conjugate of the denominator, 7+6i.
-\frac{4\left(7+6i\right)}{7^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{4\left(7+6i\right)}{85}
By definition, i^{2} is -1. Calculate the denominator.
-\frac{4\times 7+4\times \left(6i\right)}{85}
Multiply 4 times 7+6i.
-\frac{28+24i}{85}
Do the multiplications in 4\times 7+4\times \left(6i\right).
-\frac{28}{85}-\frac{24}{85}i
Divide 28+24i by 85 to get \frac{28}{85}+\frac{24}{85}i.
Re(-\frac{4\left(7+6i\right)}{\left(7-6i\right)\left(7+6i\right)})
Multiply both numerator and denominator of \frac{4}{7-6i} by the complex conjugate of the denominator, 7+6i.
Re(-\frac{4\left(7+6i\right)}{7^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(-\frac{4\left(7+6i\right)}{85})
By definition, i^{2} is -1. Calculate the denominator.
Re(-\frac{4\times 7+4\times \left(6i\right)}{85})
Multiply 4 times 7+6i.
Re(-\frac{28+24i}{85})
Do the multiplications in 4\times 7+4\times \left(6i\right).
Re(-\frac{28}{85}-\frac{24}{85}i)
Divide 28+24i by 85 to get \frac{28}{85}+\frac{24}{85}i.
-\frac{28}{85}
The real part of -\frac{28}{85}-\frac{24}{85}i is -\frac{28}{85}.