Evaluate
-\frac{4}{21}-\frac{1}{3j}
Expand
-\frac{4}{21}-\frac{1}{3j}
Quiz
Polynomial
5 problems similar to:
- \frac { 4 } { 6 } ( \frac { 2 } { 4 j } + \frac { 2 } { 7 } )
Share
Copied to clipboard
-\frac{2}{3}\left(\frac{2}{4j}+\frac{2}{7}\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
-\frac{2}{3}\left(\frac{2\times 7}{28j}+\frac{2\times 4j}{28j}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4j and 7 is 28j. Multiply \frac{2}{4j} times \frac{7}{7}. Multiply \frac{2}{7} times \frac{4j}{4j}.
-\frac{2}{3}\times \frac{2\times 7+2\times 4j}{28j}
Since \frac{2\times 7}{28j} and \frac{2\times 4j}{28j} have the same denominator, add them by adding their numerators.
-\frac{2}{3}\times \frac{14+8j}{28j}
Do the multiplications in 2\times 7+2\times 4j.
-\frac{2}{3}\times \frac{2\left(4j+7\right)}{28j}
Factor the expressions that are not already factored in \frac{14+8j}{28j}.
-\frac{2}{3}\times \frac{4j+7}{14j}
Cancel out 2 in both numerator and denominator.
\frac{-2\left(4j+7\right)}{3\times 14j}
Multiply -\frac{2}{3} times \frac{4j+7}{14j} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(4j+7\right)}{3\times 7j}
Cancel out 2 in both numerator and denominator.
\frac{-\left(4j+7\right)}{21j}
Multiply 3 and 7 to get 21.
\frac{4j+7}{-21j}
Cancel out -1 in both numerator and denominator.
-\frac{2}{3}\left(\frac{2}{4j}+\frac{2}{7}\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
-\frac{2}{3}\left(\frac{2\times 7}{28j}+\frac{2\times 4j}{28j}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4j and 7 is 28j. Multiply \frac{2}{4j} times \frac{7}{7}. Multiply \frac{2}{7} times \frac{4j}{4j}.
-\frac{2}{3}\times \frac{2\times 7+2\times 4j}{28j}
Since \frac{2\times 7}{28j} and \frac{2\times 4j}{28j} have the same denominator, add them by adding their numerators.
-\frac{2}{3}\times \frac{14+8j}{28j}
Do the multiplications in 2\times 7+2\times 4j.
-\frac{2}{3}\times \frac{2\left(4j+7\right)}{28j}
Factor the expressions that are not already factored in \frac{14+8j}{28j}.
-\frac{2}{3}\times \frac{4j+7}{14j}
Cancel out 2 in both numerator and denominator.
\frac{-2\left(4j+7\right)}{3\times 14j}
Multiply -\frac{2}{3} times \frac{4j+7}{14j} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(4j+7\right)}{3\times 7j}
Cancel out 2 in both numerator and denominator.
\frac{-\left(4j+7\right)}{21j}
Multiply 3 and 7 to get 21.
\frac{4j+7}{-21j}
Cancel out -1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}