Evaluate
\frac{151z}{54}-7x+\frac{239}{120}
Expand
\frac{151z}{54}-7x+\frac{239}{120}
Share
Copied to clipboard
-\frac{4}{5}+\frac{7}{9}\times 6+\frac{7}{9}\left(-9\right)x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Use the distributive property to multiply \frac{7}{9} by 6-9x+\frac{5}{3}z.
-\frac{4}{5}+\frac{7\times 6}{9}+\frac{7}{9}\left(-9\right)x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Express \frac{7}{9}\times 6 as a single fraction.
-\frac{4}{5}+\frac{42}{9}+\frac{7}{9}\left(-9\right)x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Multiply 7 and 6 to get 42.
-\frac{4}{5}+\frac{14}{3}+\frac{7}{9}\left(-9\right)x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Reduce the fraction \frac{42}{9} to lowest terms by extracting and canceling out 3.
-\frac{4}{5}+\frac{14}{3}+\frac{7\left(-9\right)}{9}x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Express \frac{7}{9}\left(-9\right) as a single fraction.
-\frac{4}{5}+\frac{14}{3}+\frac{-63}{9}x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Multiply 7 and -9 to get -63.
-\frac{4}{5}+\frac{14}{3}-7x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Divide -63 by 9 to get -7.
-\frac{4}{5}+\frac{14}{3}-7x+\frac{7\times 5}{9\times 3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Multiply \frac{7}{9} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{4}{5}+\frac{14}{3}-7x+\frac{35}{27}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Do the multiplications in the fraction \frac{7\times 5}{9\times 3}.
-\frac{12}{15}+\frac{70}{15}-7x+\frac{35}{27}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Least common multiple of 5 and 3 is 15. Convert -\frac{4}{5} and \frac{14}{3} to fractions with denominator 15.
\frac{-12+70}{15}-7x+\frac{35}{27}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Since -\frac{12}{15} and \frac{70}{15} have the same denominator, add them by adding their numerators.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Add -12 and 70 to get 58.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{3}{4}\times \frac{5}{2}-\frac{3}{4}\left(-2\right)z
Use the distributive property to multiply -\frac{3}{4} by \frac{5}{2}-2z.
\frac{58}{15}-7x+\frac{35}{27}z+\frac{-3\times 5}{4\times 2}-\frac{3}{4}\left(-2\right)z
Multiply -\frac{3}{4} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{58}{15}-7x+\frac{35}{27}z+\frac{-15}{8}-\frac{3}{4}\left(-2\right)z
Do the multiplications in the fraction \frac{-3\times 5}{4\times 2}.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{15}{8}-\frac{3}{4}\left(-2\right)z
Fraction \frac{-15}{8} can be rewritten as -\frac{15}{8} by extracting the negative sign.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{15}{8}+\frac{-3\left(-2\right)}{4}z
Express -\frac{3}{4}\left(-2\right) as a single fraction.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{15}{8}+\frac{6}{4}z
Multiply -3 and -2 to get 6.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{15}{8}+\frac{3}{2}z
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{464}{120}-7x+\frac{35}{27}z-\frac{225}{120}+\frac{3}{2}z
Least common multiple of 15 and 8 is 120. Convert \frac{58}{15} and \frac{15}{8} to fractions with denominator 120.
\frac{464-225}{120}-7x+\frac{35}{27}z+\frac{3}{2}z
Since \frac{464}{120} and \frac{225}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{239}{120}-7x+\frac{35}{27}z+\frac{3}{2}z
Subtract 225 from 464 to get 239.
\frac{239}{120}-7x+\frac{151}{54}z
Combine \frac{35}{27}z and \frac{3}{2}z to get \frac{151}{54}z.
-\frac{4}{5}+\frac{7}{9}\times 6+\frac{7}{9}\left(-9\right)x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Use the distributive property to multiply \frac{7}{9} by 6-9x+\frac{5}{3}z.
-\frac{4}{5}+\frac{7\times 6}{9}+\frac{7}{9}\left(-9\right)x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Express \frac{7}{9}\times 6 as a single fraction.
-\frac{4}{5}+\frac{42}{9}+\frac{7}{9}\left(-9\right)x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Multiply 7 and 6 to get 42.
-\frac{4}{5}+\frac{14}{3}+\frac{7}{9}\left(-9\right)x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Reduce the fraction \frac{42}{9} to lowest terms by extracting and canceling out 3.
-\frac{4}{5}+\frac{14}{3}+\frac{7\left(-9\right)}{9}x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Express \frac{7}{9}\left(-9\right) as a single fraction.
-\frac{4}{5}+\frac{14}{3}+\frac{-63}{9}x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Multiply 7 and -9 to get -63.
-\frac{4}{5}+\frac{14}{3}-7x+\frac{7}{9}\times \frac{5}{3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Divide -63 by 9 to get -7.
-\frac{4}{5}+\frac{14}{3}-7x+\frac{7\times 5}{9\times 3}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Multiply \frac{7}{9} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{4}{5}+\frac{14}{3}-7x+\frac{35}{27}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Do the multiplications in the fraction \frac{7\times 5}{9\times 3}.
-\frac{12}{15}+\frac{70}{15}-7x+\frac{35}{27}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Least common multiple of 5 and 3 is 15. Convert -\frac{4}{5} and \frac{14}{3} to fractions with denominator 15.
\frac{-12+70}{15}-7x+\frac{35}{27}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Since -\frac{12}{15} and \frac{70}{15} have the same denominator, add them by adding their numerators.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{3}{4}\left(\frac{5}{2}-2z\right)
Add -12 and 70 to get 58.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{3}{4}\times \frac{5}{2}-\frac{3}{4}\left(-2\right)z
Use the distributive property to multiply -\frac{3}{4} by \frac{5}{2}-2z.
\frac{58}{15}-7x+\frac{35}{27}z+\frac{-3\times 5}{4\times 2}-\frac{3}{4}\left(-2\right)z
Multiply -\frac{3}{4} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{58}{15}-7x+\frac{35}{27}z+\frac{-15}{8}-\frac{3}{4}\left(-2\right)z
Do the multiplications in the fraction \frac{-3\times 5}{4\times 2}.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{15}{8}-\frac{3}{4}\left(-2\right)z
Fraction \frac{-15}{8} can be rewritten as -\frac{15}{8} by extracting the negative sign.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{15}{8}+\frac{-3\left(-2\right)}{4}z
Express -\frac{3}{4}\left(-2\right) as a single fraction.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{15}{8}+\frac{6}{4}z
Multiply -3 and -2 to get 6.
\frac{58}{15}-7x+\frac{35}{27}z-\frac{15}{8}+\frac{3}{2}z
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{464}{120}-7x+\frac{35}{27}z-\frac{225}{120}+\frac{3}{2}z
Least common multiple of 15 and 8 is 120. Convert \frac{58}{15} and \frac{15}{8} to fractions with denominator 120.
\frac{464-225}{120}-7x+\frac{35}{27}z+\frac{3}{2}z
Since \frac{464}{120} and \frac{225}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{239}{120}-7x+\frac{35}{27}z+\frac{3}{2}z
Subtract 225 from 464 to get 239.
\frac{239}{120}-7x+\frac{151}{54}z
Combine \frac{35}{27}z and \frac{3}{2}z to get \frac{151}{54}z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}