Solve for p
p = \frac{\sqrt{151} + 2}{3} \approx 4.762735242
p=\frac{2-\sqrt{151}}{3}\approx -3.429401909
Share
Copied to clipboard
-\frac{4}{3}p+\frac{20}{3}=-p^{2}+23
Add 20 and 3 to get 23.
-\frac{4}{3}p+\frac{20}{3}+p^{2}=23
Add p^{2} to both sides.
-\frac{4}{3}p+\frac{20}{3}+p^{2}-23=0
Subtract 23 from both sides.
-\frac{4}{3}p-\frac{49}{3}+p^{2}=0
Subtract 23 from \frac{20}{3} to get -\frac{49}{3}.
p^{2}-\frac{4}{3}p-\frac{49}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\left(-\frac{49}{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{4}{3} for b, and -\frac{49}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\left(-\frac{49}{3}\right)}}{2}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
p=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}+\frac{196}{3}}}{2}
Multiply -4 times -\frac{49}{3}.
p=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{604}{9}}}{2}
Add \frac{16}{9} to \frac{196}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
p=\frac{-\left(-\frac{4}{3}\right)±\frac{2\sqrt{151}}{3}}{2}
Take the square root of \frac{604}{9}.
p=\frac{\frac{4}{3}±\frac{2\sqrt{151}}{3}}{2}
The opposite of -\frac{4}{3} is \frac{4}{3}.
p=\frac{2\sqrt{151}+4}{2\times 3}
Now solve the equation p=\frac{\frac{4}{3}±\frac{2\sqrt{151}}{3}}{2} when ± is plus. Add \frac{4}{3} to \frac{2\sqrt{151}}{3}.
p=\frac{\sqrt{151}+2}{3}
Divide \frac{4+2\sqrt{151}}{3} by 2.
p=\frac{4-2\sqrt{151}}{2\times 3}
Now solve the equation p=\frac{\frac{4}{3}±\frac{2\sqrt{151}}{3}}{2} when ± is minus. Subtract \frac{2\sqrt{151}}{3} from \frac{4}{3}.
p=\frac{2-\sqrt{151}}{3}
Divide \frac{4-2\sqrt{151}}{3} by 2.
p=\frac{\sqrt{151}+2}{3} p=\frac{2-\sqrt{151}}{3}
The equation is now solved.
-\frac{4}{3}p+\frac{20}{3}=-p^{2}+23
Add 20 and 3 to get 23.
-\frac{4}{3}p+\frac{20}{3}+p^{2}=23
Add p^{2} to both sides.
-\frac{4}{3}p+p^{2}=23-\frac{20}{3}
Subtract \frac{20}{3} from both sides.
-\frac{4}{3}p+p^{2}=\frac{49}{3}
Subtract \frac{20}{3} from 23 to get \frac{49}{3}.
p^{2}-\frac{4}{3}p=\frac{49}{3}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
p^{2}-\frac{4}{3}p+\left(-\frac{2}{3}\right)^{2}=\frac{49}{3}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-\frac{4}{3}p+\frac{4}{9}=\frac{49}{3}+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
p^{2}-\frac{4}{3}p+\frac{4}{9}=\frac{151}{9}
Add \frac{49}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{2}{3}\right)^{2}=\frac{151}{9}
Factor p^{2}-\frac{4}{3}p+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{2}{3}\right)^{2}}=\sqrt{\frac{151}{9}}
Take the square root of both sides of the equation.
p-\frac{2}{3}=\frac{\sqrt{151}}{3} p-\frac{2}{3}=-\frac{\sqrt{151}}{3}
Simplify.
p=\frac{\sqrt{151}+2}{3} p=\frac{2-\sqrt{151}}{3}
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}