Solve for m
m=\sqrt{6}+3\approx 5.449489743
m=3-\sqrt{6}\approx 0.550510257
Share
Copied to clipboard
-\frac{4}{3}m^{2}+4m+\frac{2}{3}m^{2}=2
Add \frac{2}{3}m^{2} to both sides.
-\frac{2}{3}m^{2}+4m=2
Combine -\frac{4}{3}m^{2} and \frac{2}{3}m^{2} to get -\frac{2}{3}m^{2}.
-\frac{2}{3}m^{2}+4m-2=0
Subtract 2 from both sides.
m=\frac{-4±\sqrt{4^{2}-4\left(-\frac{2}{3}\right)\left(-2\right)}}{2\left(-\frac{2}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{2}{3} for a, 4 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-4±\sqrt{16-4\left(-\frac{2}{3}\right)\left(-2\right)}}{2\left(-\frac{2}{3}\right)}
Square 4.
m=\frac{-4±\sqrt{16+\frac{8}{3}\left(-2\right)}}{2\left(-\frac{2}{3}\right)}
Multiply -4 times -\frac{2}{3}.
m=\frac{-4±\sqrt{16-\frac{16}{3}}}{2\left(-\frac{2}{3}\right)}
Multiply \frac{8}{3} times -2.
m=\frac{-4±\sqrt{\frac{32}{3}}}{2\left(-\frac{2}{3}\right)}
Add 16 to -\frac{16}{3}.
m=\frac{-4±\frac{4\sqrt{6}}{3}}{2\left(-\frac{2}{3}\right)}
Take the square root of \frac{32}{3}.
m=\frac{-4±\frac{4\sqrt{6}}{3}}{-\frac{4}{3}}
Multiply 2 times -\frac{2}{3}.
m=\frac{\frac{4\sqrt{6}}{3}-4}{-\frac{4}{3}}
Now solve the equation m=\frac{-4±\frac{4\sqrt{6}}{3}}{-\frac{4}{3}} when ± is plus. Add -4 to \frac{4\sqrt{6}}{3}.
m=3-\sqrt{6}
Divide -4+\frac{4\sqrt{6}}{3} by -\frac{4}{3} by multiplying -4+\frac{4\sqrt{6}}{3} by the reciprocal of -\frac{4}{3}.
m=\frac{-\frac{4\sqrt{6}}{3}-4}{-\frac{4}{3}}
Now solve the equation m=\frac{-4±\frac{4\sqrt{6}}{3}}{-\frac{4}{3}} when ± is minus. Subtract \frac{4\sqrt{6}}{3} from -4.
m=\sqrt{6}+3
Divide -4-\frac{4\sqrt{6}}{3} by -\frac{4}{3} by multiplying -4-\frac{4\sqrt{6}}{3} by the reciprocal of -\frac{4}{3}.
m=3-\sqrt{6} m=\sqrt{6}+3
The equation is now solved.
-\frac{4}{3}m^{2}+4m+\frac{2}{3}m^{2}=2
Add \frac{2}{3}m^{2} to both sides.
-\frac{2}{3}m^{2}+4m=2
Combine -\frac{4}{3}m^{2} and \frac{2}{3}m^{2} to get -\frac{2}{3}m^{2}.
\frac{-\frac{2}{3}m^{2}+4m}{-\frac{2}{3}}=\frac{2}{-\frac{2}{3}}
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
m^{2}+\frac{4}{-\frac{2}{3}}m=\frac{2}{-\frac{2}{3}}
Dividing by -\frac{2}{3} undoes the multiplication by -\frac{2}{3}.
m^{2}-6m=\frac{2}{-\frac{2}{3}}
Divide 4 by -\frac{2}{3} by multiplying 4 by the reciprocal of -\frac{2}{3}.
m^{2}-6m=-3
Divide 2 by -\frac{2}{3} by multiplying 2 by the reciprocal of -\frac{2}{3}.
m^{2}-6m+\left(-3\right)^{2}=-3+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-6m+9=-3+9
Square -3.
m^{2}-6m+9=6
Add -3 to 9.
\left(m-3\right)^{2}=6
Factor m^{2}-6m+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-3\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
m-3=\sqrt{6} m-3=-\sqrt{6}
Simplify.
m=\sqrt{6}+3 m=3-\sqrt{6}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}