Evaluate
-\frac{c}{2}-\frac{3}{5}+\frac{15}{2c}
Expand
-\frac{c}{2}-\frac{3}{5}+\frac{15}{2c}
Share
Copied to clipboard
-\frac{3\times 2c}{10c}-\frac{5\left(c^{2}-15\right)}{10c}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2c is 10c. Multiply -\frac{3}{5} times \frac{2c}{2c}. Multiply \frac{c^{2}-15}{2c} times \frac{5}{5}.
\frac{-3\times 2c-5\left(c^{2}-15\right)}{10c}
Since -\frac{3\times 2c}{10c} and \frac{5\left(c^{2}-15\right)}{10c} have the same denominator, subtract them by subtracting their numerators.
\frac{-6c-5c^{2}+75}{10c}
Do the multiplications in -3\times 2c-5\left(c^{2}-15\right).
\frac{-5\left(c-\left(-\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)\left(c-\left(\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)}{10c}
Factor the expressions that are not already factored in \frac{-6c-5c^{2}+75}{10c}.
\frac{-\left(c-\left(-\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)\left(c-\left(\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)}{2c}
Cancel out 5 in both numerator and denominator.
\frac{\left(c-\left(-\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)\left(c-\left(\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)}{-2c}
Cancel out -1 in both numerator and denominator.
\frac{\left(c+\frac{8}{5}\sqrt{6}+\frac{3}{5}\right)\left(c-\left(\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)}{-2c}
To find the opposite of -\frac{8}{5}\sqrt{6}-\frac{3}{5}, find the opposite of each term.
\frac{\left(c+\frac{8}{5}\sqrt{6}+\frac{3}{5}\right)\left(c-\frac{8}{5}\sqrt{6}+\frac{3}{5}\right)}{-2c}
To find the opposite of \frac{8}{5}\sqrt{6}-\frac{3}{5}, find the opposite of each term.
\frac{c^{2}+\frac{6}{5}c-\frac{64}{25}\left(\sqrt{6}\right)^{2}+\frac{9}{25}}{-2c}
Use the distributive property to multiply c+\frac{8}{5}\sqrt{6}+\frac{3}{5} by c-\frac{8}{5}\sqrt{6}+\frac{3}{5} and combine like terms.
\frac{c^{2}+\frac{6}{5}c-\frac{64}{25}\times 6+\frac{9}{25}}{-2c}
The square of \sqrt{6} is 6.
\frac{c^{2}+\frac{6}{5}c-\frac{384}{25}+\frac{9}{25}}{-2c}
Multiply -\frac{64}{25} and 6 to get -\frac{384}{25}.
\frac{c^{2}+\frac{6}{5}c-15}{-2c}
Add -\frac{384}{25} and \frac{9}{25} to get -15.
-\frac{3\times 2c}{10c}-\frac{5\left(c^{2}-15\right)}{10c}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2c is 10c. Multiply -\frac{3}{5} times \frac{2c}{2c}. Multiply \frac{c^{2}-15}{2c} times \frac{5}{5}.
\frac{-3\times 2c-5\left(c^{2}-15\right)}{10c}
Since -\frac{3\times 2c}{10c} and \frac{5\left(c^{2}-15\right)}{10c} have the same denominator, subtract them by subtracting their numerators.
\frac{-6c-5c^{2}+75}{10c}
Do the multiplications in -3\times 2c-5\left(c^{2}-15\right).
\frac{-5\left(c-\left(-\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)\left(c-\left(\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)}{10c}
Factor the expressions that are not already factored in \frac{-6c-5c^{2}+75}{10c}.
\frac{-\left(c-\left(-\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)\left(c-\left(\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)}{2c}
Cancel out 5 in both numerator and denominator.
\frac{\left(c-\left(-\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)\left(c-\left(\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)}{-2c}
Cancel out -1 in both numerator and denominator.
\frac{\left(c+\frac{8}{5}\sqrt{6}+\frac{3}{5}\right)\left(c-\left(\frac{8}{5}\sqrt{6}-\frac{3}{5}\right)\right)}{-2c}
To find the opposite of -\frac{8}{5}\sqrt{6}-\frac{3}{5}, find the opposite of each term.
\frac{\left(c+\frac{8}{5}\sqrt{6}+\frac{3}{5}\right)\left(c-\frac{8}{5}\sqrt{6}+\frac{3}{5}\right)}{-2c}
To find the opposite of \frac{8}{5}\sqrt{6}-\frac{3}{5}, find the opposite of each term.
\frac{c^{2}+\frac{6}{5}c-\frac{64}{25}\left(\sqrt{6}\right)^{2}+\frac{9}{25}}{-2c}
Use the distributive property to multiply c+\frac{8}{5}\sqrt{6}+\frac{3}{5} by c-\frac{8}{5}\sqrt{6}+\frac{3}{5} and combine like terms.
\frac{c^{2}+\frac{6}{5}c-\frac{64}{25}\times 6+\frac{9}{25}}{-2c}
The square of \sqrt{6} is 6.
\frac{c^{2}+\frac{6}{5}c-\frac{384}{25}+\frac{9}{25}}{-2c}
Multiply -\frac{64}{25} and 6 to get -\frac{384}{25}.
\frac{c^{2}+\frac{6}{5}c-15}{-2c}
Add -\frac{384}{25} and \frac{9}{25} to get -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}