Solve for s
s=2
Share
Copied to clipboard
-\frac{3}{5}\times 25s-\frac{3}{5}\left(-40\right)=6s-18
Use the distributive property to multiply -\frac{3}{5} by 25s-40.
\frac{-3\times 25}{5}s-\frac{3}{5}\left(-40\right)=6s-18
Express -\frac{3}{5}\times 25 as a single fraction.
\frac{-75}{5}s-\frac{3}{5}\left(-40\right)=6s-18
Multiply -3 and 25 to get -75.
-15s-\frac{3}{5}\left(-40\right)=6s-18
Divide -75 by 5 to get -15.
-15s+\frac{-3\left(-40\right)}{5}=6s-18
Express -\frac{3}{5}\left(-40\right) as a single fraction.
-15s+\frac{120}{5}=6s-18
Multiply -3 and -40 to get 120.
-15s+24=6s-18
Divide 120 by 5 to get 24.
-15s+24-6s=-18
Subtract 6s from both sides.
-21s+24=-18
Combine -15s and -6s to get -21s.
-21s=-18-24
Subtract 24 from both sides.
-21s=-42
Subtract 24 from -18 to get -42.
s=\frac{-42}{-21}
Divide both sides by -21.
s=2
Divide -42 by -21 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}