Evaluate
-\frac{24\pi ^{4}}{25}\approx -93.512727393
Share
Copied to clipboard
-\frac{3}{5}\pi ^{2}\times 2\times \frac{4}{5}\pi \pi
Multiply \pi and \pi to get \pi ^{2}.
-\frac{3}{5}\pi ^{3}\times 2\times \frac{4}{5}\pi
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-\frac{3}{5}\pi ^{4}\times 2\times \frac{4}{5}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{-3\times 2}{5}\pi ^{4}\times \frac{4}{5}
Express -\frac{3}{5}\times 2 as a single fraction.
\frac{-6}{5}\pi ^{4}\times \frac{4}{5}
Multiply -3 and 2 to get -6.
-\frac{6}{5}\pi ^{4}\times \frac{4}{5}
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
\frac{-6\times 4}{5\times 5}\pi ^{4}
Multiply -\frac{6}{5} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-24}{25}\pi ^{4}
Do the multiplications in the fraction \frac{-6\times 4}{5\times 5}.
-\frac{24}{25}\pi ^{4}
Fraction \frac{-24}{25} can be rewritten as -\frac{24}{25} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}