Solve for y
y = -\frac{8}{7} = -1\frac{1}{7} \approx -1.142857143
Graph
Share
Copied to clipboard
40\left(-\frac{3}{5}\right)=-y\left(-21\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 40y, the least common multiple of y,-40.
\frac{40\left(-3\right)}{5}=-y\left(-21\right)
Express 40\left(-\frac{3}{5}\right) as a single fraction.
\frac{-120}{5}=-y\left(-21\right)
Multiply 40 and -3 to get -120.
-24=-y\left(-21\right)
Divide -120 by 5 to get -24.
-24=21y
Multiply -1 and -21 to get 21.
21y=-24
Swap sides so that all variable terms are on the left hand side.
y=\frac{-24}{21}
Divide both sides by 21.
y=-\frac{8}{7}
Reduce the fraction \frac{-24}{21} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}