Evaluate
-\frac{141}{160}=-0.88125
Factor
-\frac{141}{160} = -0.88125
Share
Copied to clipboard
-\frac{3}{4}\left(\frac{15}{40}+\frac{32}{40}\right)
Least common multiple of 8 and 5 is 40. Convert \frac{3}{8} and \frac{4}{5} to fractions with denominator 40.
-\frac{3}{4}\times \frac{15+32}{40}
Since \frac{15}{40} and \frac{32}{40} have the same denominator, add them by adding their numerators.
-\frac{3}{4}\times \frac{47}{40}
Add 15 and 32 to get 47.
\frac{-3\times 47}{4\times 40}
Multiply -\frac{3}{4} times \frac{47}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{-141}{160}
Do the multiplications in the fraction \frac{-3\times 47}{4\times 40}.
-\frac{141}{160}
Fraction \frac{-141}{160} can be rewritten as -\frac{141}{160} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}