Evaluate
-\frac{x\left(x-27\right)}{4}
Expand
\frac{27x-x^{2}}{4}
Graph
Share
Copied to clipboard
-\frac{3}{2}x\left(-\frac{1}{2}+\frac{x}{6}-\frac{8}{2}\right)
Convert 4 to fraction \frac{8}{2}.
-\frac{3}{2}x\left(\frac{-1-8}{2}+\frac{x}{6}\right)
Since -\frac{1}{2} and \frac{8}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{2}x\left(-\frac{9}{2}+\frac{x}{6}\right)
Subtract 8 from -1 to get -9.
-\frac{3}{2}x\left(-\frac{9\times 3}{6}+\frac{x}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 6 is 6. Multiply -\frac{9}{2} times \frac{3}{3}.
-\frac{3}{2}x\times \frac{-9\times 3+x}{6}
Since -\frac{9\times 3}{6} and \frac{x}{6} have the same denominator, add them by adding their numerators.
-\frac{3}{2}x\times \frac{-27+x}{6}
Do the multiplications in -9\times 3+x.
\frac{-3\left(-27+x\right)}{2\times 6}x
Multiply -\frac{3}{2} times \frac{-27+x}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(x-27\right)}{2\times 2}x
Cancel out 3 in both numerator and denominator.
\frac{-\left(x-27\right)}{4}x
Multiply 2 and 2 to get 4.
\frac{-\left(x-27\right)x}{4}
Express \frac{-\left(x-27\right)}{4}x as a single fraction.
\frac{\left(-x+27\right)x}{4}
Use the distributive property to multiply -1 by x-27.
\frac{-x^{2}+27x}{4}
Use the distributive property to multiply -x+27 by x.
-\frac{3}{2}x\left(-\frac{1}{2}+\frac{x}{6}-\frac{8}{2}\right)
Convert 4 to fraction \frac{8}{2}.
-\frac{3}{2}x\left(\frac{-1-8}{2}+\frac{x}{6}\right)
Since -\frac{1}{2} and \frac{8}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{2}x\left(-\frac{9}{2}+\frac{x}{6}\right)
Subtract 8 from -1 to get -9.
-\frac{3}{2}x\left(-\frac{9\times 3}{6}+\frac{x}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 6 is 6. Multiply -\frac{9}{2} times \frac{3}{3}.
-\frac{3}{2}x\times \frac{-9\times 3+x}{6}
Since -\frac{9\times 3}{6} and \frac{x}{6} have the same denominator, add them by adding their numerators.
-\frac{3}{2}x\times \frac{-27+x}{6}
Do the multiplications in -9\times 3+x.
\frac{-3\left(-27+x\right)}{2\times 6}x
Multiply -\frac{3}{2} times \frac{-27+x}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(x-27\right)}{2\times 2}x
Cancel out 3 in both numerator and denominator.
\frac{-\left(x-27\right)}{4}x
Multiply 2 and 2 to get 4.
\frac{-\left(x-27\right)x}{4}
Express \frac{-\left(x-27\right)}{4}x as a single fraction.
\frac{\left(-x+27\right)x}{4}
Use the distributive property to multiply -1 by x-27.
\frac{-x^{2}+27x}{4}
Use the distributive property to multiply -x+27 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}