Solve for k
k=\frac{4x^{2}}{9}+\frac{t}{2}+\frac{1}{2}
Solve for t
t=-\frac{8x^{2}}{9}+2k-1
Graph
Share
Copied to clipboard
-4\times 2x^{2}+18k=9\left(t+1\right)
Multiply both sides of the equation by 36, the least common multiple of 9,2,4.
-8x^{2}+18k=9\left(t+1\right)
Multiply -4 and 2 to get -8.
-8x^{2}+18k=9t+9
Use the distributive property to multiply 9 by t+1.
18k=9t+9+8x^{2}
Add 8x^{2} to both sides.
18k=8x^{2}+9t+9
The equation is in standard form.
\frac{18k}{18}=\frac{8x^{2}+9t+9}{18}
Divide both sides by 18.
k=\frac{8x^{2}+9t+9}{18}
Dividing by 18 undoes the multiplication by 18.
k=\frac{4x^{2}}{9}+\frac{t}{2}+\frac{1}{2}
Divide 9t+9+8x^{2} by 18.
-4\times 2x^{2}+18k=9\left(t+1\right)
Multiply both sides of the equation by 36, the least common multiple of 9,2,4.
-8x^{2}+18k=9\left(t+1\right)
Multiply -4 and 2 to get -8.
-8x^{2}+18k=9t+9
Use the distributive property to multiply 9 by t+1.
9t+9=-8x^{2}+18k
Swap sides so that all variable terms are on the left hand side.
9t=-8x^{2}+18k-9
Subtract 9 from both sides.
\frac{9t}{9}=\frac{-8x^{2}+18k-9}{9}
Divide both sides by 9.
t=\frac{-8x^{2}+18k-9}{9}
Dividing by 9 undoes the multiplication by 9.
t=-\frac{8x^{2}}{9}+2k-1
Divide -8x^{2}+18k-9 by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}