Solve for x
x=t+2+\frac{2}{t}
t>0
Solve for t
t=\frac{\sqrt{x^{2}-4x-4}+x-2}{2}
t=\frac{-\sqrt{x^{2}-4x-4}+x-2}{2}\text{, }x\geq 2\sqrt{2}+2
Graph
Share
Copied to clipboard
\left(-\frac{2}{t}\right)\sqrt{t}t=\left(-\sqrt{t}\right)xt+\left(t+2\right)\sqrt{t}t
Multiply both sides of the equation by t.
\frac{-2\sqrt{t}}{t}t=\left(-\sqrt{t}\right)xt+\left(t+2\right)\sqrt{t}t
Express \left(-\frac{2}{t}\right)\sqrt{t} as a single fraction.
\frac{-2\sqrt{t}t}{t}=\left(-\sqrt{t}\right)xt+\left(t+2\right)\sqrt{t}t
Express \frac{-2\sqrt{t}}{t}t as a single fraction.
-2\sqrt{t}=\left(-\sqrt{t}\right)xt+\left(t+2\right)\sqrt{t}t
Cancel out t in both numerator and denominator.
-2\sqrt{t}=\left(-\sqrt{t}\right)xt+\left(t\sqrt{t}+2\sqrt{t}\right)t
Use the distributive property to multiply t+2 by \sqrt{t}.
-2\sqrt{t}=\left(-\sqrt{t}\right)xt+\sqrt{t}t^{2}+2\sqrt{t}t
Use the distributive property to multiply t\sqrt{t}+2\sqrt{t} by t.
\left(-\sqrt{t}\right)xt+\sqrt{t}t^{2}+2\sqrt{t}t=-2\sqrt{t}
Swap sides so that all variable terms are on the left hand side.
\left(-\sqrt{t}\right)xt+2\sqrt{t}t=-2\sqrt{t}-\sqrt{t}t^{2}
Subtract \sqrt{t}t^{2} from both sides.
\left(-\sqrt{t}\right)xt=-2\sqrt{t}-\sqrt{t}t^{2}-2\sqrt{t}t
Subtract 2\sqrt{t}t from both sides.
-\sqrt{t}xt=-2\sqrt{t}-\sqrt{t}t^{2}-2\sqrt{t}t
Multiply -1 and 2 to get -2.
\left(-\sqrt{t}t\right)x=-\sqrt{t}t^{2}-2\sqrt{t}t-2\sqrt{t}
The equation is in standard form.
\frac{\left(-\sqrt{t}t\right)x}{-\sqrt{t}t}=-\frac{\sqrt{t}\left(t^{2}+2t+2\right)}{-\sqrt{t}t}
Divide both sides by -\sqrt{t}t.
x=-\frac{\sqrt{t}\left(t^{2}+2t+2\right)}{-\sqrt{t}t}
Dividing by -\sqrt{t}t undoes the multiplication by -\sqrt{t}t.
x=t+2+\frac{2}{t}
Divide -\left(2+t^{2}+2t\right)\sqrt{t} by -\sqrt{t}t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}