Evaluate
-\left(x+3\right)
Expand
-x-3
Graph
Share
Copied to clipboard
\frac{-2\left(15+5x\right)}{5\times 2}
Multiply -\frac{2}{5} times \frac{15+5x}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(5x+15\right)}{5}
Cancel out 2 in both numerator and denominator.
\frac{-5x-15}{5}
To find the opposite of 5x+15, find the opposite of each term.
-3-x
Divide each term of -5x-15 by 5 to get -3-x.
\frac{-2\left(15+5x\right)}{5\times 2}
Multiply -\frac{2}{5} times \frac{15+5x}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(5x+15\right)}{5}
Cancel out 2 in both numerator and denominator.
\frac{-5x-15}{5}
To find the opposite of 5x+15, find the opposite of each term.
-3-x
Divide each term of -5x-15 by 5 to get -3-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}