Solve for x
x = -\frac{18}{5} = -3\frac{3}{5} = -3.6
Graph
Share
Copied to clipboard
-\frac{2}{3}x-\frac{2}{3}\left(-3\right)-x=8
Use the distributive property to multiply -\frac{2}{3} by x-3.
-\frac{2}{3}x+\frac{-2\left(-3\right)}{3}-x=8
Express -\frac{2}{3}\left(-3\right) as a single fraction.
-\frac{2}{3}x+\frac{6}{3}-x=8
Multiply -2 and -3 to get 6.
-\frac{2}{3}x+2-x=8
Divide 6 by 3 to get 2.
-\frac{5}{3}x+2=8
Combine -\frac{2}{3}x and -x to get -\frac{5}{3}x.
-\frac{5}{3}x=8-2
Subtract 2 from both sides.
-\frac{5}{3}x=6
Subtract 2 from 8 to get 6.
x=6\left(-\frac{3}{5}\right)
Multiply both sides by -\frac{3}{5}, the reciprocal of -\frac{5}{3}.
x=\frac{6\left(-3\right)}{5}
Express 6\left(-\frac{3}{5}\right) as a single fraction.
x=\frac{-18}{5}
Multiply 6 and -3 to get -18.
x=-\frac{18}{5}
Fraction \frac{-18}{5} can be rewritten as -\frac{18}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}