Evaluate
\frac{1}{1000}=0.001
Factor
\frac{1}{2 ^ {3} \cdot 5 ^ {3}} = 0.001
Share
Copied to clipboard
-\frac{\frac{1}{256}\left(-10\right)^{-3}}{128^{-4}\times 32^{4}}
Calculate 16 to the power of -2 and get \frac{1}{256}.
-\frac{\frac{1}{256}\left(-\frac{1}{1000}\right)}{128^{-4}\times 32^{4}}
Calculate -10 to the power of -3 and get -\frac{1}{1000}.
-\frac{-\frac{1}{256000}}{128^{-4}\times 32^{4}}
Multiply \frac{1}{256} and -\frac{1}{1000} to get -\frac{1}{256000}.
-\frac{-\frac{1}{256000}}{\frac{1}{268435456}\times 32^{4}}
Calculate 128 to the power of -4 and get \frac{1}{268435456}.
-\frac{-\frac{1}{256000}}{\frac{1}{268435456}\times 1048576}
Calculate 32 to the power of 4 and get 1048576.
-\frac{-\frac{1}{256000}}{\frac{1}{256}}
Multiply \frac{1}{268435456} and 1048576 to get \frac{1}{256}.
-\left(-\frac{1}{256000}\times 256\right)
Divide -\frac{1}{256000} by \frac{1}{256} by multiplying -\frac{1}{256000} by the reciprocal of \frac{1}{256}.
-\left(-\frac{1}{1000}\right)
Multiply -\frac{1}{256000} and 256 to get -\frac{1}{1000}.
\frac{1}{1000}
The opposite of -\frac{1}{1000} is \frac{1}{1000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}