Solve for x
x = -\frac{15}{4} = -3\frac{3}{4} = -3.75
Graph
Share
Copied to clipboard
-5=12\left(x-1\right)-10\left(x+2\right)-5\left(2x+3\right)+12
Multiply both sides of the equation by 30, the least common multiple of 6,5,3.
-5=12x-12-10\left(x+2\right)-5\left(2x+3\right)+12
Use the distributive property to multiply 12 by x-1.
-5=12x-12-10x-20-5\left(2x+3\right)+12
Use the distributive property to multiply -10 by x+2.
-5=2x-12-20-5\left(2x+3\right)+12
Combine 12x and -10x to get 2x.
-5=2x-32-5\left(2x+3\right)+12
Subtract 20 from -12 to get -32.
-5=2x-32-10x-15+12
Use the distributive property to multiply -5 by 2x+3.
-5=-8x-32-15+12
Combine 2x and -10x to get -8x.
-5=-8x-47+12
Subtract 15 from -32 to get -47.
-5=-8x-35
Add -47 and 12 to get -35.
-8x-35=-5
Swap sides so that all variable terms are on the left hand side.
-8x=-5+35
Add 35 to both sides.
-8x=30
Add -5 and 35 to get 30.
x=\frac{30}{-8}
Divide both sides by -8.
x=-\frac{15}{4}
Reduce the fraction \frac{30}{-8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}