Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-\frac{1}{5}a^{2}=\frac{1}{125}
Add \frac{1}{125} to both sides. Anything plus zero gives itself.
a^{2}=\frac{1}{125}\left(-5\right)
Multiply both sides by -5, the reciprocal of -\frac{1}{5}.
a^{2}=-\frac{1}{25}
Multiply \frac{1}{125} and -5 to get -\frac{1}{25}.
a=\frac{1}{5}i a=-\frac{1}{5}i
The equation is now solved.
-\frac{1}{5}a^{2}-\frac{1}{125}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{5}\right)\left(-\frac{1}{125}\right)}}{2\left(-\frac{1}{5}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{5} for a, 0 for b, and -\frac{1}{125} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-\frac{1}{5}\right)\left(-\frac{1}{125}\right)}}{2\left(-\frac{1}{5}\right)}
Square 0.
a=\frac{0±\sqrt{\frac{4}{5}\left(-\frac{1}{125}\right)}}{2\left(-\frac{1}{5}\right)}
Multiply -4 times -\frac{1}{5}.
a=\frac{0±\sqrt{-\frac{4}{625}}}{2\left(-\frac{1}{5}\right)}
Multiply \frac{4}{5} times -\frac{1}{125} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{0±\frac{2}{25}i}{2\left(-\frac{1}{5}\right)}
Take the square root of -\frac{4}{625}.
a=\frac{0±\frac{2}{25}i}{-\frac{2}{5}}
Multiply 2 times -\frac{1}{5}.
a=-\frac{1}{5}i
Now solve the equation a=\frac{0±\frac{2}{25}i}{-\frac{2}{5}} when ± is plus.
a=\frac{1}{5}i
Now solve the equation a=\frac{0±\frac{2}{25}i}{-\frac{2}{5}} when ± is minus.
a=-\frac{1}{5}i a=\frac{1}{5}i
The equation is now solved.