Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{4}xx-\frac{1}{4}x\times 8+\left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right)
Use the distributive property to multiply -\frac{1}{4}x by x+8.
-\frac{1}{4}x^{2}-\frac{1}{4}x\times 8+\left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right)
Multiply x and x to get x^{2}.
-\frac{1}{4}x^{2}+\frac{-8}{4}x+\left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right)
Express -\frac{1}{4}\times 8 as a single fraction.
-\frac{1}{4}x^{2}-2x+\left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right)
Divide -8 by 4 to get -2.
-\frac{1}{4}x^{2}-2x+\left(\frac{1}{2}x\right)^{2}-2^{2}
Consider \left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{1}{4}x^{2}-2x+\left(\frac{1}{2}\right)^{2}x^{2}-2^{2}
Expand \left(\frac{1}{2}x\right)^{2}.
-\frac{1}{4}x^{2}-2x+\frac{1}{4}x^{2}-2^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
-\frac{1}{4}x^{2}-2x+\frac{1}{4}x^{2}-4
Calculate 2 to the power of 2 and get 4.
-2x-4
Combine -\frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get 0.
-\frac{1}{4}xx-\frac{1}{4}x\times 8+\left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right)
Use the distributive property to multiply -\frac{1}{4}x by x+8.
-\frac{1}{4}x^{2}-\frac{1}{4}x\times 8+\left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right)
Multiply x and x to get x^{2}.
-\frac{1}{4}x^{2}+\frac{-8}{4}x+\left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right)
Express -\frac{1}{4}\times 8 as a single fraction.
-\frac{1}{4}x^{2}-2x+\left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right)
Divide -8 by 4 to get -2.
-\frac{1}{4}x^{2}-2x+\left(\frac{1}{2}x\right)^{2}-2^{2}
Consider \left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{1}{4}x^{2}-2x+\left(\frac{1}{2}\right)^{2}x^{2}-2^{2}
Expand \left(\frac{1}{2}x\right)^{2}.
-\frac{1}{4}x^{2}-2x+\frac{1}{4}x^{2}-2^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
-\frac{1}{4}x^{2}-2x+\frac{1}{4}x^{2}-4
Calculate 2 to the power of 2 and get 4.
-2x-4
Combine -\frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get 0.